International Journal of Smart Sensor and Adhoc Network


The stock price index prediction is a very challenging task that's because the market has a very complicated nonlinear movement system. This fluctuation is influenced by many different factors. Multiple examples demonstrate the suitability of Machine Learning (ML) models like Neural Network algorithms (NN) and Long Short-Term Memory (LSTM) for such time series predictions, as well as how frequently they produce satisfactory outcomes. However, relatively few studies have employed robust feature engineering sequence models to forecast future prices. In this paper, we propose a cutting-edge stock price prediction model based on a Deep Learning (DL) technique. We chose the stock data for Intel, the firm with one of the quickest growths in the past ten years. The experimental results demonstrate that, for predicting this particular stock time series, our suggested model outperforms the current Gated Recurrent Unit (GRU) model. Our prediction approach reduces inaccuracy by taking into account the random nature of data on a big scale.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.