International Journal of Smart Sensor and Adhoc Network


The most fundamental problem of wireless sensor networks is localization (finding the geographical location of the sensors). Most of the localization algorithms proposed for sensor networks are based on Sequential Monte Carlo (SMC) method. To achieve high accuracy in localization it requires high seed node density and it also suffers from low sampling efficiency. There are some papers which solves this problems but they are not energy efficient. Another approach The Bounding Box method was used to reduce the scope of searching the candidate samples and thus reduces the time for finding the set of valid samples. In this paper we propose an energy efficient approach which will further reduce the scope of searching the candidate samples, so now we can remove the invalid samples from the sample space and we can introduce more valid samples to improve the localization accuracy. We will consider the direction of movement of the valid samples, so that we can predict the next position of the samples more accurately, hence we can achieve high localization accuracy.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.