•  
  •  
 

International Journal of Power System Operation and Energy Management

Abstract

Wind turbine generators (WTGs) are usually controlled to generate maximum electrical power from wind under normal wind conditions. With the increasing penetration of wind power into electric power grids, energy storage devices will be required to dynamically match the intermittency of wind energy. To meet the requirements of frequency and active power regulation, energy storage devices will be required to dynamically match the intermittency of wind energy. A novel two- layer constant-power control scheme for a wind farm equipped with doubly-fed induction generator (DFIG) wind turbines. Each DFIG wind turbine is equipped with a supercapacitor energy storage system (ESS) and is controlled by the low-layer WTG controllers and coordinated by a high-layer wind-farm supervisory controller (WFSC). The WFSC generates the active-power references for the low-layer WTG controllers according to the active-power demand from the grid operator; the low-layer WTG controllers then regulate each DFIG wind turbine to generate the desired amount of active power, where the deviations between the available wind energy input and desired active power output are compensated by the ESS. Simulation studies are carried out in PSCAD/EMTDC on a wind farm equipped with 15 DFIG wind turbines to verify the effectiveness of the proposed control scheme.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.