•  
  •  
 

International Journal of Mechanical and Industrial Engineering

Abstract

Metal hydrides are potential hydrogen storage media. They release hydrogen at moderate temperatures and pressures. Magnesium hydride is a promising approach for stationary power system application, due to high hydrogen storage capacity by weight. Magnesium hydride based reactor design is more complex due to high thermal energy release and absorption during hydriding reaction and dehydriding reaction, respectively. In this study, results of a numerical modeling study are presented for a 1.5 kg Magnesium alloy based hydriding reactor. Temperature profile in the reactor is computed by FEM analysis using ANSYS software for hydriding and dehydriding reaction. FEM analysis indicates that the reactor temperature is raised from 200 C to 422 ºC in 20 minutes during the hydriding process. Hence, a “cooling system” is required for maintaining temperature during the hydriding process. During the dehydriding process, maximum temperature drop occurs from 350 C to 189 ºC in 20 minutes. Therefore, an external heat source of 2 kW is required for maintaining the temperature during dehydriding. Details are presented.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.