•  
  •  
 

International Journal of Mechanical and Industrial Engineering

Abstract

Photovoltaic solar cell generates electricity by receiving solar irradiance. The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation with the photovoltaic module. Such unit is called photovoltaic/thermal collector (PV/T) or hybrid (PV/T). The objective of the present work is to design a system for cooling the solar cell in order to increase its electrical efficiency and also to extract the heat energy. A hybrid solar system which generates both electricity and heat energy simultaneously is studied. This hybrid system consists of PV cells attached to an absorber plate with fins attached at the other side of the absorber surface. Simulation model for single pass, single duct solar collector with fins is prepared and performance curves are obtained. Performance with seven different gases analysed for maximum heat transfer, minimum mass flow rate & minimum number of fins. Hydrogen is found to be the most suitable option with the present. For hydrogen, the system requires a mass flow rate of 0.00275 kg/s, which is the least amongst all. Theoretical number of fins required in this case is found out to be 3.46.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.