•  
  •  
 

International Journal of Mechanical and Industrial Engineering

Abstract

Experimental investigation is conducted to examine the characteristics of forced convective heat transfer from electronic components, subjected to a confined impinging circular jet of Air and CO2. Parameters such as Heat transfer coefficient, Jet velocities, Nozzle-to-chip spacing (aspect ratio) (H/d) have been studied. Nozzle diameter ranged from 2mm to 8mm. Local heat flux measurements are made with different diameters of jet in the range of Reynolds numbers from 5,000 to 44,000 for CO2 and 2,500 to 23,000 for air. H/d is varied from 3 to 45 for both air and CO2. Variations both in the local heat transfer coefficient and Nusselt number are determined as function of Re. Variations of average Nusselt number and local heat flux with time are obtained in a wide range of Re and H/d ratios. The results of the investigation are presented in graphical form and a comparative study of Air and CO2 as coolant is made.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.