•  
  •  
 

International Journal of Mechanical and Industrial Engineering

Abstract

Reduced engine noise has contributed greatly to the comfort of today’s passenger vehicles. The trend towards lighter vehicles has led to massive increase in the use of plastic parts, especially for engine components such as intake manifolds and intake air pipes. The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. The engine power can be increased with the help of improved interior surface roughness and lowered air temperature. The increased usage of plastics for air intake manifold (AIM) production, in place of metallic materials, made the NVH optimization more complicated. In recent years, automotive engine manufacturers are increasingly focusing their attention on noise generated by plastic air intake manifolds (AIMs). The main objective is to predict the B12D engine intake manifold noise due to the combined effects of combustion loads and fluid flow pressure at various engine speeds (2000rpm-6400rpm). The meshing of intake manifold was done in finite analysis software HYPERMESH. The post processing was done in NASTRAN software to get the noise levels in AIM. The analytical results were validated by using experimental results.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.