•  
  •  
 

International Journal of Image Processing and Vision Science

Abstract

Recently several papers have appeared in the literature which propose pseudo-dynamic features for automatic static handwritten signature verification based on the use of gray level values from signature stroke pixels. Good results have been obtained using rotation invariant uniform local binary patterns LBP plus LBP and statistical measures from gray level co-occurrence matrices (GLCM) with MCYT and GPDS offline signature corpuses. In these studies the corpuses contain signatures written on a uniform white “nondistorting” background, however the gray level distribution of signature strokes changes when it is written on a complex background, such as a check or an invoice. The aim of this paper is to measure gray level features robustness when it is distorted by a complex background and also to propose more stable features. A set of different checks and invoices with varying background complexity is blended with the MCYT and GPDS signatures. The blending model is based on multiplication. The signature models are trained with genuine signatures on white background and tested with other genuine and forgeries mixed with different backgrounds. Results show that a basic version of local binary patterns (LBP) or local derivative and directional patterns are more robust than rotation invariant uniform LBP or GLCM features to the gray level distortion when using a support vector machine with histogram oriented kernels as a classifier.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.