International Journal of Image Processing and Vision Science


Content-based image retrieval (CBIR) is an active research area with the development of multimedia technologies and has become a source of exact and fast retrieval. The aim of CBIR is to search and retrieve images from a large database and find out the best match for the given query. Accuracy and efficiency for high dimensional datasets with enormous number of samples is a challenging arena. In this paper, Content Based Image Retrieval using various features such as color, shape, texture is made and a comparison is made among them. The performance of the retrieval system is evaluated depending upon the features extracted from an image. The performance was evaluated using precision and recall rates. Haralick texture features were analyzed at 0 o, 45 o, 90 o, 180 o using gray level co-occurrence matrix. Color feature extraction was done using color moments. Structured features and multiple feature fusion are two main technologies to ensure the retrieval accuracy in the system. GIST is considered as one of the main structured features. It was experimentally observed that combination of these techniques yielded superior performance than individual features. The results for the most efficient combination of techniques have also been presented and optimized for each class of query.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.