•  
  •  
 

International Journal of Image Processing and Vision Science

Abstract

TEM (Transmission Electron Microscopy) is an important morphological characterization tool for Nanomaterials. Quite often a microscopy image gets corrupted by noise, which may arise in the process of acquiring the image, or during its transmission, or even during reproduction of the image. Removal of noise from an image is one of the most important tasks in image processing. Denoising techniques aim at reducing the statistical perturbations and recovering as well as possible the true underlying signal. Depending on the nature of the noise, such as additive or multiplicative type of noise, there are several approaches towards removing noise from an image. Image De-noising improves the quality of images acquired by optical, electro-optical or electronic microscopy. This paper compares five filters on the measures of mean of image, signal to noise ratio, peak signal to noise ratio & mean square error. In this paper four types of noise (Gaussian noise, Salt & Pepper noise, Speckle noise and Poisson noise) is used and image de-noising performed for different noise by various filters (WFDWT, BF, HMDF, FDE, DVROFT). Further results have been compared for all noises. It is observed that for Gaussian Noise WFDWT & for other noises HMDF has shown the better performance results.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.