International Journal of Image Processing and Vision Science


In digital communication bandwidth is essential parameter to be considered. Transmission and storage of images requires lot of memory in order to use bandwidth efficiently neural network and Discrete cosine transform together are used in this paper to compress images. Artificial neural network gives fixed compression ratio for any images results in fixed usage of memory and bandwidth. In this paper multi-layer feedforward neural network has been employed to achieve image compression. The proposed technique divides the original image in to several blocks and applies Discrete Cosine Transform (DCT) to these blocks as a pre-process technique. Quality of image is noticed with change in training algorithms, convergence time to attain desired mean square error. Compression ratio and PSNR in dB is calculated by varying hidden neurons. The proposed work is designed using MATLAB 7.10. and synthesized by mapping on Vertex 5 in Xilinx ISE for understanding hardware complexity. Keywords - backpropagation, Discrete





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.