International Journal of Image Processing and Vision Science


Image segmentation is a puzzled problem even after four decades of research. Research on image segmentation is currently conducted in three levels. Development of image segmentation methods, evaluation of segmentation algorithms and performance and study of these evaluation methods. Hundreds of techniques have been proposed for segmentation of natural images, noisy images, medical images etc. Currently most of the researchers are evaluating the segmentation algorithms using ground truth evaluation of (Berkeley segmentation database) BSD images. In this paper an overview of various segmentation algorithms is discussed. The discussion is mainly based on the soft computing approaches used for segmentation of images without noise and noisy images and the parameters used for evaluating these algorithms. Some of these techniques used are Markov Random Field (MRF) model, Neural Network, Clustering, Particle Swarm optimization, Fuzzy Logic approach and different combinations of these soft techniques.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.