•  
  •  
 

International Journal of Image Processing and Vision Science

Abstract

We introduce an algorithm based on the morphological shared-weight neural network. Which extract the features and then classify them. This type of network can work effectively, even if the gray level intensity and facial expression of the images are varied. The images are processed by a morphological shared weight neural network to detect and extract the features of face images. For the detection of the edges of the image we are using sobel operator. We are using back propagation algorithm for the purpose of learning and training of the neural network system. Being nonlinear and translation-invariant, the morphological operations can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The recognition efficiency of this modified network is about 98%.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.