International Journal of Instrumentation Control and Automation


In this paper, Taguchi method is applied to find optimum process parameter for Abrasive water jet machining (AWJM). Abrasive water jet machining is a non–traditional process of removal of material by impact erosion of high pressure, high velocity of water and entrained high velocity of grit abrasives on a work piece. Experimental investigation were conducted to assess the influence of abrasive water jet machining (AWJM) process parameters on MRR and surface Roughness (Ra) of aluminium. The approach was based on Taguchi’s method and analysis of variance (ANOVA) to optimize the AWJM process parameter for effective machining and to predict the optimal choice for each AWJM parameter such as pressure, standoff distance, Abrasive flow rate and Traverse rate. For each combination of orthogonal array we have conducted three experiments and with the help of ANOVA it is found that these parameters have a significant influence on machining characteristics such as metal removal rate (MRR) and surface roughness (SR). The analysis of the Taguchi method reveals that, in general the standoff distance significantly affects the MRR while, Abrasive flow rate affects the surface Roughness. Experiments are carried out using (L9) orthogonal array by varying pressure, sta



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.