International Journal of Instrumentation Control and Automation


Composite materials have made way to various fields, including aerospace structures, underwater vehicles, automobiles and robot systems. Due to the high strength to weight ratio of composites, they serve as a suitable alternative to metals, therefore making the need for a reliable database of structural design more important. Most of the modern civilian and military aircraft use composite materials for their primary structural components (in addition to metals). One of the key areas in composite structural design involves the tensile strength of joints. In the present work, the lap joints fabricated from different orientations of GFRP (Glass fiber reinforced polymer) specimens are subjected to tensile test. The effect of fibre orientation on the tensile strength of lap joint is investigated both experimentally and computationally using conventional software package. The experimental results are compared with FEA using conventional software package ANSYS.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.