•  
  •  
 

International Journal of Electronics Signals and Systems

Abstract

In this paper, fuzzy c-means algorithm uses neural network algorithm is presented. In pattern recognition, fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms to group the high dimensional data into clusters. The proposed work involves two steps. First, a recently developed and Enhanced Kmeans Fast Leaning Artificial Neural Network (KFLANN) frame work is used to determine cluster centers. Secondly, Fuzzy C-means uses these cluster centers to generate fuzzy membership functions. Enhanced K-means Fast Learning Artificial Neural Network (KFLANN) is an algorithm which produces consistent classification of the vectors in to the same clusters regardless of the data presentation sequence. Experiments are conducted on two artificial data sets Iris and New Thyroid. The result shows that Enhanced KFLANN is faster to generate consistent cluster centers and utilizes these for elicitation of efficient fuzzy memberships.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.