International Journal of Electronics Signals and Systems


Texture can be considered as a repeating pattern of local variation of pixel intensities. Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A feedforward neural network is used to train the backpropagation learning algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and the remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. It is observed that the proposed neuro-fuzzy model performed better than the neural network.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.