International Journal of Electronics and Electical Engineering


Abstract—Speech signal can be used as marker for identification of Parkinson’s disease. It is neurological disorder which is progressive in nature mainly effect the people in old age. Identification of relevant discriminant features from speech signal has been a challenge in this area. In this paper, factor analysis method is used to select distinguishing features from a set of features. These selected features are more effective for detection of the PD. From an empirical study on existing dataset and a generated dataset, it was found that the jitter, shimmer variants and noise to harmonic ratio are dominant features in detecting PD. Further, these features are employed in support vector machine for classifying PD from healthy subjects. This method provides an average accuracy of 85 % with sensitivity and specificity of about 86% and 84%. Important outcome of this study is that sustained vowels phonation captures distinguishing information for analysis and detection of PD.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.