International Journal of Electronics and Electical Engineering


Neurological research shows that the biological neurons store information in the timing of spikes. Spiking neural networks are the third generation of neural networks which take into account the precise firing time of neurons for information encoding. In SNNs, computation is performed in the temporal (time related) domain and relies on the timings between spikes. The leaky integrate-and-fire neuron is probably the best-known example of a formal spiking neuron model. In this paper, we have simulated LIF model of SNN for performing the image segmentation using K-Means clustering. Clustering can be termed here as a grouping of similar images in the database. Clustering is done based on different attributes of an image such as size, color, texture etc. The purpose of clustering is to get meaningful result, effective storage and fast retrieval in various areas. Image segmentation is the first step and also one of the most critical tasks of image analysis .Because of its simplicity and efficiency, clustering approach is used for the segmentation of (textured) natural images. After the extraction of the image features using wavelet; the feature samples, handled as vectors, are grouped together in compact but well-separated clusters corresponding to each class of the image. Simulation results therefore demonstrate how SNN can be applied with efficacy in Image Segmentation.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.