•  
  •  
 

International Journal of Electronics and Electical Engineering

Abstract

As technology scales into the nanometer regime ground bounce noise and noise immunity are becoming important metric of comparable importance to leakage current, active power, delay and area for the analysis and design of complex arithmetic logic circuits. In this paper, low leakage 1bit full adder cells are proposed for mobile applications with low ground bounce noise and a novel technique has been introduced with improved staggered phase damping technique for further reduction in the peak of ground bounce noise. Noise immunity has been carefully considered since the significant threshold current of the low threshold voltage transition becomes more susceptible to noise. We introduced a new transistor resizing approach for 1bit full adder cells to determine the optimal sleep transistor size which reduce the leakage power and ground bounce noise. The simulation results depicts that the proposed design also leads to efficient 1bit full adder cells in terms of standby leakage power, active power, ground bounce noise and noise margin. We have performed simulations using Cadence Spectre 90nm standard CMOS technology at room temperature with supply voltage of 1V.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.