International Journal of Electronics and Electical Engineering


In this paper, a new high speed control circuit is proposed which will act as a critical path for the data which will go from input to output to improve the performance of wave pipelining circuits The wave pipelining is a method of high performance circuit designs which implements pipelining in logic without the use of intermediate registers. Wave pipelining has been widely used in the past few years with a great deal of significant features in technology and applications. It has the ability to improve speed, efficiency, economy in every aspect which it presents. Wave pipelining is being used in wide range of applications like digital filters, network routers, multipliers, fast convolvers, MODEMs, image processing, control systems, radars and many others. In previous work, the operating speed of the wave-pipelined circuit can be increased by the following three tasks: adjustment of the clock period, clock skew and equalization of path delays. The path-delay equalization task can be done theoretically, but the real challenge is to accomplish it in the presence of various different delays. So, the main objective of this paper is to solve the path delay equalization problem by inserting the control circuit in wave pipelined based circuit which will act as critical path for the data that moves from input to output. The proposed technique is evaluated for DSP applications by designing 4- tap FIR filter using Distributed arithmetic algorithm (DAA). Then comparison of this design is done with 4-tap FIR filter designs using conventional pipelining and non pipelining. The synthesis and simulation results based on Xilinx ISE Navigator 12.3 shows that wave pipelined DAA based filter is faster by a factor of 1.43 compared to non pipelined one and the conventional pipelined filter is faster than non pipelined by factor of 1.61 but at the cost of increased logic utilization by 200 %. So, the wave-pipelined DA filters designed with the proposed control circuit can operate at higher frequency than that of non-pipelined but less than that of pipelined. The gain in speed in pipelined compared to that of wavepipelined is at the cost of increased area and more dissipated power. When latency is considered, wavepipelined design filters with the proposed scheme are having the lowest latency among three schemes designed.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.