•  
  •  
 

International Journal of Electronics and Electical Engineering

Abstract

Content Based Audio Retrieval system is very helpful to facilitate users to find the target audio materials. Audio signals are classified into speech, music, several types of environmental sounds and silence based on audio content analysis. The extracted audio features include temporal curves of the average zero-crossing rate, the spectral Centroid, the spectral flux, as well as spectral roll-off of these curves. In this dissertation we have used the four features for extracting the audio from the database, use of this multiple features increase the accuracy of the audio file which we are retrieving from the audio database.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.