International Journal of Electronics and Electical Engineering


A novel minimum bit-error rate (MBER) space–time-equalization (STE)-based multiuser detector (MUD) is proposed for multiple-receive-antenna-assisted space-division multiple-access systems. It is shown that the MBER-STE-aided MUD significantly outperforms the standard minimum mean-square error design in terms of the achievable bit-error rate (BER). Adaptive implementations of the MBER STE are considered, and both the block-databased and sample-by-sample adaptive MBER algorithms are proposed. The latter, referred to as the least BER (LBER) algorithm, is compared with the most popular adaptive algorithm, known as the least mean square (LMS) algorithm. It is shown that in case of binary phase-shift keying, the computational complexity of the LBER-STE is about half of that required by the classic LMS-STE. Our simulation results demonstrate that the MBER ST-DFE assisted MUD is more robust to channel estimation errors as well as to potential error propagation imposed by decision feedback errors, compared to the MMSE ST-DFE assisted MUD.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.