•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

Suicide has emerged as one of the serious problems which should be eradicated from the society. People with suicidal thoughts restrict themselves by not expressing thoughts to the people around them. Studies have shown that people show more interest in expressing their thoughts over social media platforms. So, research has been conducted to identify people with suicidal ideation by analyzing the posts which they posted in social media platforms. Certain studies mined out new factors which influenced people to commit suicide, but those factors had certain drawbacks in it. This paper mainly focuses on overcoming those drawbacks in the factors. A new modified approach for extracting those risk factors is introduced as it can be used for future works related to suicidal ideation detection tasks. Statistical methods were imposed on the data to mine out the underlying characteristics of the features. K-Means++ clustering algorithm was implemented to extract the modified features. The modified features were given as an input for a testing classifier, and it attained an accuracy of 75.13%.

DOI

10.47893/IJCSI.2022.1197

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.