•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

k - Nearest Neighbor Rule is a well-known technique for text classification. The reason behind this is its simplicity, effectiveness, easily modifiable. In this paper, we briefly discuss text classification, k-NN algorithm and analyse the sensitivity problem of k value. To overcome this problem, we introduced inverse cosine distance weighted voting function for text classification. Therefore, Accuracy of text classification is increased even if any large value for k is chosen, as compared to simple k Nearest Neighbor classifier. The proposed weighted function is proved as more effective when any application has large text dataset with some dominating categories, using experimental results.

DOI

10.47893/IJCSI.2014.1183

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.