•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

This paper discusses an approach to generate test data for path coverage based testing using Genetic Algorithms, Differential Evolution and Artificial Bee Colony optimization algorithms. Control flow graph and cyclomatic complexity of the example program has been used to find out the number of feasible paths present in the program and it is compared with the actual no of paths covered by the evolved test cases using those meta-heuristic algorithms. Genetic Algorithms, Artificial Bee Colony optimization and Differential Evolution are acting here as meta-heuristic search paradisms for path coverage based test data generation. Finally the performance of the test data generation using three meta-heuristic optimization algorithms are empirically evaluated and compared.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.