International Journal of Computer Science and Informatics


Unethical e-mail senders bear little or no cost for mass distribution of messages, yet normal e-mail users are forced to spend time and effort in reading undesirable messages from their mailboxes. Due to the rapid increase of electronic mail (or e-mail), several people and companies found it an easy way to distribute a massive amount of undesired messages to a tremendous number of users at a very low cost. These unwanted bulk messages or junk e-mails are called spam messages .Several machine learning approaches have been applied to this problem. In this paper, we explore a new approach based on Bayesian classification that can automatically classify e-mail messages as spam or legitimate. We study its performance for various datasets.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.