•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

As Many CADx systems have been developed to detect lung cancer based on spatial domain features that process only the pixel intensity values, the proposed scheme applies frequency transform to the lung images to extract frequency domain features and they are combined with spatial features so that the features that are not revealed in spatial domain will be extracted and the classification performance can be tuned up. The proposed CADx comprises of four stages. In the first stage, lung region is segmented using Convexity based active contour segmentation. At second stage ROIs are extracted using spatially constrained KFCM clustering. Followed by standard wavelet transforms is applied on ROI so that transform domain features are extracted with shape and haralick histogram features. Finally neural network is trained by combined feature set to identify the cancerous nodules. Our proposed scheme has shown sensitivity of 95% and specificity of 96%.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.