•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

Data-driven decision support systems, such as data warehouses can serve the requirement of extraction of information from more than one subject area. Data warehouses standardize the data across the organization so as to have a single view of information. Data warehouses (DW) can provide the information required by the decision makers. The data warehouse supports an on-line analytical processing (OLAP), the functional and performance requirements of which are quite different from those of the on-line transaction processing (OLTP) applications traditionally supported by the operational databases. Data warehouses provide on-line analytical processing (OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitates effective data mining. Data warehousing and OLAP have emerged as leading technologies that facilitate data storage, organization and then, significant retrieval. Both are essential elements of decision support, which has increasingly become a focus of the database industry. This paper provides a detailed picture of Data warehousing (DW), exploring the features of it, applications and the architecture of DW over Data Mining, Online Analytical Processing (OLAP), On-line Transaction Processing (OLTP) technologies.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.