International Journal of Computer Science and Informatics


Remote Sensing has been globally used for knowledge elicitation of earth’s surface and atmosphere. Land cover mapping, one of the widely used applications of remote sensing is a method for acquiring geo-spatial information from satellite data. We have attempted here to solve the land cover problem by image classification using one of the newest and most promising Swarm techniques of Artificial Bee Colony optimization (ABC). In this paper we propose an implementation of ABC for satellite image classification. ABC is used for optimal classification of images for mapping the land-usage efficiently. The results produced by ABC algorithm are compared with the results obtained by other techniques like BBO, MLC, MDC, Membrane computing and Fuzzy classifier to show the effectiveness of our proposed implementation.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.