International Journal of Computer Science and Informatics


Today, web servers, are the key repositories of the information & internet is the source of getting this information. There is a mammoth data on the Internet. It becomes a difficult job to search out the accordant data. Search Engine plays a vital role in searching the accordant data. A search engine follows these steps: Web crawling by crawler, Indexing by Indexer and Searching by Searcher. Web crawler retrieves information of the web pages by following every link on the site. Which is stored by web search engine then the content of the web page is indexed by the indexer. The main role of indexer is how data can be catch soon as per user requirements. As the client gives a query, Search Engine searches the results corresponding to this query to provide excellent output. Here ambition is to enroot an algorithm for search engine which may response most desirable result as per user requirement. In this a ranking method is used by the search engine to rank the web pages. Various ranking approaches are discussed in literature but in this paper, ranking algorithm is proposed which is based on parent-child relationship. Proposed ranking algorithm is based on priority assignment phase of Heterogeneous Earliest Finish Time (HEFT) Algorithm which is designed for multiprocessor task scheduling. Proposed algorithm works on three on range variable its means the density of keywords, number of successors to the nodes and the age of the web page. Density shows the occurrence of the keyword on the particular web page. Numbers of successors represent the outgoing link to a single web page. Age is the freshness value of the web page. The page which is modified recently is the freshest page and having the smallest age or largest freshness value. Proposed Technique requires that the priorities of each page to be set with the downward rank values & pages are arranged in ascending/ Descending order of their rank values. Experiments show that our algorithm is valuable. After the comparison with Google we find that our Algorithm is performing better. For 70% problems our algorithm is working better than Google.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.