•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

Privacy preserving in Data mining & publishing, plays a major role in today networked world. It is important to preserve the privacy of the vital information corresponding to a data set. This process can be achieved by k-anonymization solution for classification. Along with the privacy preserving using anonymization, yielding the optimized data sets is also of equal importance with a cost effective approach. In this paper Top-Down Refinement algorithm has been proposed which yields optimum results in a cost effective manner. Bayesian Classification has been proposed in this paper to predict class membership probabilities for a data tuple for which the associated class label is unknown.

DOI

10.47893/IJCSI.2012.1046

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.