International Journal of Computer Science and Informatics


Classification is the supervised learning technique of data mining which is used to extract hidden useful knowledge over a large volume of databases by predicting the class values based on the predicting attribute values. Of the various techniques, the most widely talked ones include decision tree, probabilistic model and evolutionary algorithms. Recently, the probabilistic and evolutionary techniques are most worked upon, because of the fact that probabilistic models yields high accuracy when there is no attribute dependency in the existing problem and evolutionary algorithms are used to obtain optimal solution over a large search space very quickly when there is less information known about a problem and problem posses attribute dependency. Though there are tradeoffs in each model still there are scopes to improve upon the existing. The proposed approach improves the evolutionary technique such as genetic algorithm by improving the fitness function parameters. Also, in this we compare the genetic algorithm results with Naïve Bayes algorithm results. For the experimental work we have used the nursery data set taken from the UCI Machine Learning Repository.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.