•  
  •  
 

International Journal of Computer Science and Informatics

Abstract

In real life clustering of high dimensional data is a big problem. To find out the dense regions from increasing dimensions is one of them. We have already studied the clustering techniques of low dimensional data sets like k-means, k-mediod, BIRCH, CLARANS, CURE, DBScan, PAM etc. If a region is dense then it consists with number of data points with a minimum support of input parameter ø other wise it cannot take into clustering. So in this approach we have implemented CLIQUE to find out the clusters from multidimensional data sets. In dimension growth subspace clustering the clustering process start at single dimensional subspaces and grows upward to higher dimensional ones. It is a partition method where each dimension divided like a grid structure. The grid is a cell where the data points are present. We check the dense units from the structure by applying different algorithms. Finally the clusters are formed from the high dimensional data sets.

DOI

10.47893/IJCSI.2011.1019

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.