International Journal of Computer and Communication Technology


Heart disease is a general term used to describe numerous medical conditions that directly affect the heart and its various components. It is a prevalent health concern in modern times. The focus of this paper is to evaluate different data mining techniques for the prediction of heart disease, which have been introduced in recent years. The findings indicate that neural networks using 15 attributes demonstrate the best performance among all other data mining techniques. Additionally, the analysis concludes that decision trees, with the assistance of genetic algorithms and feature subset selection, also exhibit high accuracy. The study concludes that data mining techniques can effectively predict heart disease and that the choice of technique depends on the specific context of the analysis. The study suggests that decision trees and artificial neural network models are suitable for heart disease prediction. The study also recommends further research to explore the use of other data mining techniques for heart disease prediction.




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.