International Journal of Computer and Communication Technology


Data mining is used to extract meaningful information and to develop significant relationships among variables stored in large data set. Few years ago, the information flow in education field was relatively simple and the application of technology was limited. However, as we progress into a more integrated world where technology has become an integral part of the business processes, the process of transfer of information has become more complicated. Today, one of the biggest challenges that educational institutions face is the explosive growth of educational data and to use this data to improve the quality of managerial decisions and student’s performance. The main objective of higher education institutions is to provide quality education to its students. One way to achieve highest level of quality in higher education system is by discovering knowledge for prediction regarding enrolment of students in a particular course, alienation of traditional classroom teaching model, detection of Unfair means used in online examination, detection of abnormal values in the result sheets of the students, prediction about students’ performance. The paper aims to purpose the use of Data mining techniques to improve the efficiency of higher educational institutions. If data mining techniques such as clustering, dicision tree and association can be applied to higher education processes, it can help improve student’s performance.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.