•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

Hybrid image segmentation is proposed in this paper. The input image is firstly preprocessed in order to extract the features using Discrete Wavelet Transform (DWT) .The features are then fed to Fuzzy C-means algorithm which is unsupervised. The membership function created by Fuzzy C-means (FCM) is used as a target to be fed in neural network. Then the Back Propagation Neural network (BPN) has been trained based on targets which is obtained by (FCM) and features as input data. Combining the FCM information and neural network in unsupervised manner lead us to achieve better segmentation .The proposed algorithm is tested on various Berkeley database gray level images.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.