International Journal of Computer and Communication Technology


Content-based image retrieval (CBIR) uses the visual features of an image such as color, shape and texture to represent and index the image. In a typical content based image retrieval system, a set of images that exhibit visual features similar to that of the query image are returned in response to a query. CLUE (CLUster based image rEtrieval) is a popular CBIR technique that retrieves images by clustering. In this paper, we propose a CBIR system that also retrieves images by clustering just like CLUE. But, the proposed system combines all the features (shape, color, and texture) with a threshold for the purpose. The combination of all the features provides a robust feature set for image retrieval. We evaluated the performance of the proposed system using images of varying size and resolution from image database and compared its performance with that of the other two existing CBIR systems namely UFM and CLUE. We have used four different resolutions of image. Experimentally, we find that the proposed system outperforms the other two existing systems in ecery resolution of image





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.