•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

Content Based Image Retrieval (CBIR) operates on a totally different principle from keyword indexing. Primitive features characterizing image content, such as color, texture, and shape are computed for both stored and query images, and used to identify the images most closely matching the query. There have been many approaches to decide and extract the features of images in the database. Towards this goal we propose a technique by which the color content of images is automatically extracted to form a class of meta-data that is easily indexed. The color indexing algorithm uses the back-projection of binary color sets to extract color regions from images. This technique uses equalized histogram image bins of red, green and blue color. The feature vector is composed of mean, standard deviation and variance of 16 histogram bins of each color space. The new proposed methods are tested on the database of 600 images and the results are in the form of precision and recall.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.