•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

A new approach for classification has been presented in this paper. The proposed technique, Modified Radial Basis Functional Neural Network (MRBFNN) consists of assigning weights between the input layer and the hidden layer of Radial Basis functional Neural Network (RBFNN). The centers of MRBFNN are initialized using Particle swarm Optimization (PSO) and variance and centers are updated using back propagation and both the sets of weights are updated using Recursive Least Square (RLS). Our simulation result is carried out on Wisconsin Breast Cancer (WBC) data set. The results are compared with RBFNN, where the variance and centers are updated using back propagation and weights are updated using Recursive Least Square (RLS) and Kalman Filter. It is found the proposed method provides more accurate result and better classification.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.