•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

The paper presents a novel approach of clustering image datasets with differential evolution (DE) technique. The differential evolution is a parallel direct search population based optimization method. From our simulations it is found that DE is able to optimize the quality measures of clusters of image datasets. To claim the superiority of DE based clustering we have compared the outcomes of DE with the classical K-means and popular Particle Swarm Optimization (PSO) algorithms for the same datasets. The comparisons results reveal the suitability of DE for image clustering in all image datasets.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.