International Journal of Computer and Communication Technology


Diagnostic decision-making in pulmonary medical imaging has been improved by computer-aided diagnosis (CAD) systems, serving as second readers to detect suspicious nodules for diagnosis by a radiologist. Though increasing the accuracy, these CAD systems rarely offer useful descriptions of the suspected nodule or their decision criteria, mainly due to lack of nodule data. In this paper, we present a framework for mapping image features to radiologist-defined diagnostic criteria based on the newly available data). Using data mining, we found promising mappings to clinically relevant, human-interpretable nodule characteristics such as malignancy, margin, spiculation, subtlety, and texture. Bridging the semantic gap between computed image features and radiologist defined diagnostic criteria allows CAD systems to offer not only a second opinion but also decision-support criteria usable by radiologists. Presenting transparent decisions will improve the clinical acceptance of CAD.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.