•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

In this paper, recognition system for totally unconstrained handwritten characters for south Indian language of Kannada is proposed. The proposed feature extraction technique is based on Fourier Transform and well known Principal Component Analysis (PCA). The system trains the appropriate frequency band images followed by PCA feature extraction scheme. For subsequent classification technique, Probabilistic Neural Network (PNN) is used. The proposed system is tested on large database containing Kannada characters and also tested on standard COIL-20 object database and the results were found to be better compared to standard techniques.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.