•  
  •  
 

International Journal of Computer and Communication Technology

Abstract

Dimensionality reduction of a feature set is a common preprocessing step used for pattern recognition, classification applications and in compression schemes. Rough Set Theory is one of the popular methods used, and can be shown to be optimal using different optimality criteria. This paper proposes a novel method for dimensionality reduction of a feature set by choosing a subset of the original features that contains most of the essential information, using the same criteria as the ACO hybridized with Rough Set Theory. We call this method Rough ACO. The proposed method is successfully applied for choosing the best feature combinations and then applying the Upper and Lower Approximations to find the reduced set of features from a gene expression data.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.