Graduate Research in Engineering and Technology (GRET)


Ground effect plays a vital role in modulating the flow behavior over any streamlined body. The most widely used wing-in ground effect (WIG) aircrafts and seaplanes utilize this phenomenon in order to enhance the aerodynamic performance during the landing and take-off phases of flight. This paper investigates the aerodynamics of ground effect on a NACA 4412 rectangular wing without end plates. The experiment was conducted in a low-speed wind tunnel at Re=2×105 for the ground clearance of 1 and 0.5 of the chord, measured from the maximum thickness position on the airfoil. The pressure distribution over the chord length was recorded for α=3° and 6° to verify the effect of ground clearance during takeoffs. The results have shown to be in good accordance with the literature, as the coefficient of lift augmented with increase in ground proximity and the induced drag was minimized.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.