
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 3 Issue 3 Article 15

July 2012

AN ALTERNATIVE APPROACH TO AGILE USING REQUIREMENT AN ALTERNATIVE APPROACH TO AGILE USING REQUIREMENT

ENGINEERING ENGINEERING

SATHYA NARAYANAN H
Computer Science and Engineering, Government College of Engineering, Salem, India,
sathya.compsci@gmail.com

MEENAKSHI S
Computer Science and Engineering, Velammal College of Engineering, Madurai, India,
mena.sathya@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
H, SATHYA NARAYANAN and S, MEENAKSHI (2012) "AN ALTERNATIVE APPROACH TO AGILE USING
REQUIREMENT ENGINEERING," International Journal of Computer and Communication Technology: Vol. 3
: Iss. 3 , Article 15.
DOI: 10.47893/IJCCT.2012.1145
Available at: https://www.interscience.in/ijcct/vol3/iss3/15

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol3
https://www.interscience.in/ijcct/vol3/iss3
https://www.interscience.in/ijcct/vol3/iss3/15
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol3%2Fiss3%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol3/iss3/15?utm_source=www.interscience.in%2Fijcct%2Fvol3%2Fiss3%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

AN ALTERNATIVE APPROACH TO AGILE USING REQUIREMENT
ENGINEERING

1SATHYA NARAYANAN H, 2MEENAKSHI S

1Computer Science and Engineering, Government College of Engineering, Salem, India
2Computer Science and Engineering, Velammal College of Engineering, Madurai, India

E-mail: sathya.compsci@gmail.com, mena.sathya@gmail.com

Abstract- Many small-scale developers have shifted from a traditional, waterfall method for developing software to lighter
weight, agile methods. Though the agile method is quite prevalent among small scale industries, there are several
shortcomings in it. In this paper we describe the shortcomings in existing agile methodologies and the methods to overcome
some impediments using Requirement Engineering. The best features of Agile and Requirement Engineering is combined
and a tool is being created which acts as a repository of data.

Keywords: - Agile, RGM, repository,

I. INTRODUCTION
 Software development is a complex process that
can be accomplished in many different ways with
varying results. Ideally, to be a successful software
developer one must be able to build a quality project
in a reasonable time frame and budget for the client
company. There have been many different
approaches engineered for various situations. Some
methodologies that have been becoming more
common in practice are those known as agile
software development. These methods are showing
convincing benefits to small to medium scale
companies and should not be ignored by global
companies developing large-scale systems [5]. This
paper analyzes the issues present in traditional
models and the existing agile methodologies and
suggests way to overcome some of them.

II. LITERATURE REVIEW
There are many software development approaches
available today, but only a few are found to be
efficient and reliable. Traditionally Waterfall model
was used, later we switched over to many
conventional models like agile. Before describing the
challenges of agile approach, we will describe and
contrast the traditional waterfall and agile philosophy.

A. Waterfall Model
The waterfall method is a sequential design process in
which each stage is completed before proceeding to
the next one. An implementation of this process
includes five phases: requirements specification,
design, implementation or coding, testing and
debugging, and maintenance [11]. It is similar to
construction of a building. The impediment that
stumbles agile is the customer can see the output only
at the end and moreover if a customer is not satisfied
with the output the entire process goes waste and the
process has to be started again which will be more
time consuming. Hence, it is not suitable when a
software model has to be developed in a short span of
time.

B. AGILE DEVELOPMENT
The more programming methods evolve to suit the
environments of software development, the less they
resemble the traditional waterfall methods [11]. Agile
development is a way of thinking about development.
It is not a method in itself, but rather a philosophy
[8]. This philosophy is focused on a set of 4 basic
values and 12 principles, as stated in the Agile
Manifesto [2].

C. AGILE MANIFESTO
The Agile Manifesto is a document written by 17
software developers in the quest to find a lightweight,
effective development method. The Agile Manifesto's
writers include representatives from many of what are
now known as agile methods or practices. Using a
collective knowledge of software development and
seeing a need to change from heavyweight methods
such as waterfall, they wrote the Agile Manifesto.
The Agile Manifesto values read as follows [2]:
We are uncovering better ways of developing
software by doing it and helping others to do it.
Through this work we have come to value:
1. Individuals and interactions over processes and
tools
2. Working software over comprehensive
documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan. That
is, while there is value in the items on the right, we
value the items on the left more. Principles behind the
Agile Manifesto: We follow these principles:

 Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

 Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage.

 Deliver working software frequently, from a
couple of weeks to a couple of months, with
a preference to the shorter time-scale.

221

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-3

 An alternative approach to AGILE using Requirement Engineering

 Business people and developers must work
together daily throughout the project.

 Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

 The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

 Working software is the primary measure of
progress.

 Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

 Continuous attention to technical excellence
and good design enhances agility.

 Simplicity {(the art of maximizing the
amount of work not done)} is essential.

 At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly."

This philosophy influenced the creation of many
different agile methods seen today. The most notable
one that we will describe is Extreme Programming
(XP).

D. Extreme Programming
Extreme programming is one of the most popular of
today's agile methods. Focusing its values on
communication, simplicity and feedback to improve
the speed of development and quality of code, it
eliminates the requirements, design and testing
phases, and all the extensive documentation as
separate phases, but not entirely [5]. Rather, XP
suggests integrating all of these steps at the same time
in short iterations of about one to two weeks (see
Figure 1). To do this, XP suggests that developers
keep constant communication with the client-
company or customer, thus allowing flexibility that is
impossible in rigid waterfall-like processes. The
customer is considered a part of the team, and works
with the developers creating user stories, developing
tests, and prioritizing features to point the project in
the right direction [8]. Each iteration consists of a
little of each of what is normally seen in traditional
phase-based waterfall methods (see Figure 1). Each
iteration includes a little planning, analysis, design,
coding, and testing, followed by deployment. Each
iteration deployment is a point that the customer may
choose to release the project for use by the client
company. Another important part of XP is the
numerous practices that bring the agile values
together. Some of the most notable of these practices
include pair programming, and frequent testing and
refactoring. For example pair programming is where
two programmers work together on one workstation
collectively writing and reviewing each other's code
and guiding each other. Studies have shown this to
result in fast production of simple clean code that

requires less refactoring later [3]. The figure 1.(a) and
1.(b) compares the waterfall and XP life cycle
models.

E. Benefits of Being Agile
Heavily structured plan-driven methods such as
waterfall:

 do not adapt easily to changing
requirements,

 rely heavily on the quality of initial plans
and estimations, which are often unreliable,
and lack continuous customer involvement,
which can lead to misunderstandings and
wasted time.

In the design of software systems, features and
functions that seem great to the developers may not
always be needed or understood by the customer, and
projects may need changes at later stages, when the
costs of these changes are the highest. Agile software
development aims to remedy the deficiencies of
heavyweight methods. With short iterations and
regular customer involvement, project changes can be
handled at any stage [10]. Also, coding standards,
pair programming, and extensive testing seen in most
agile methods allow for development of potentially
cleaner code, and cleaner code requires less
refactoring and documentation.

F. Soft-Structured Agile Framework
One hybrid method is Soundararajan's Soft-
Structured Agile Framework. This framework
consists of two main parts: the Agile Requirement
Generation Model (Agile RGM) and the
Development Process. This particular framework's
main objective is to accommodate change in both
large-scale or small-scale projects [9]. We will
describe the two parts and then summarize the
benefits to the soft-structured agile framework. The
figure 2 shows the phases involved in Agile RGM.

G. Agile RGM
The Agile RGM is a set of well-defined activities that
provide a more structured approach compared to XP.
As shown in Figure 2, the Agile RGM consists of
three phases to help capture requirements: Education,
Feature Development and Story Development. All of
thesis phases incorporate agile principles and
practices such as customer involvement, iterative life
cycle, and minimal documentation. The Agile RGM
is employed at the beginning of a project that will
later follow either an agile or a conventional
development process.

1. Education phase
The education phase is essentially a meeting among
the development company, the client company and
potentially other various customers to help create a
better understanding of the project. This is necessary
to help build and plan a set of objectives and goals
that are to be achieved in later phases and in the
finished product. This is different from the usual XP

222

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-3

 An alternative approach to AGILE using Requirement Engineering

approach, which employs smaller sessions at the
beginning of each iteration.

2. Feature Development phase
At this stage, the customer works with the
development team to iteratively identify expected
system features. A feature is a small set of
functionality that is valuable to the customer. In
creating a feature, the development team will give an
estimation of how long it will take or if it is possible.
Then after a feature is accepted by both customer and
developers, the customer will prioritizes each feature
according to its business value to the client company.
“Business value is something that delivers profit to
the organization paying for the software in the form
of an Increase in Revenue, an Avoidance of Cost, or
an Improvement in Service" [6]. For example,
consider development of a website for an e-
commerce company. The “Online Payment" feature
has a high business value.

3. Story Development phase
Using the features created in the previous phase,
developers require additional details before
proceeding. In this phase, features are decomposed
into stories. A story is a refined user- or customer-
expected feature that will be used in the development
process. If the development team is made of multiple
teams, each team may independently work towards
decomposing one or more features into stories. Here,
the feature “Online Payment" is decomposed to “As a
user, I can pay by credit card".

H. Development Process
In this part of the soft-structured agile framework, the
developers may take two alternative approaches
depending on the scale of the system (see Figure 3).
For small-scale systems, the development team may
follow an iterative structure like XP, and make each
story an iteration. For large-scale systems, the
development team may require a more structured
approach and can choose to follow a more
conventional waterfall-like approach. For large-scale
systems, a waterfall-like approach is usually
deployed. First, subsets of stories are transformed
into one or more requirements. For example the story
“As a user, I can pay by credit card" will be given
much more detail and transformed to “the system
shall use Advanced Encryption Standard(AES) to
encode all credit card information to be transmitted
over the internet." The requirements produced from
this stage will each be developed in a waterfall-like
approach similar to the example seen in Figure 1(a).
Although a conventional approach is used here, it still
fits within an agile environment as it is guided by the
features and stories produced from the Agile RGM
process. With the requirements, this stage will also
still be able to adapt to changes more easily than
conventional waterfall methodologies because
requirements are created from stories [9]. Figure 3
shows the spectrum of software approaches.

III. PROPOSED SYSTEM
Though the agile has several advantages, when the
customer wants the same project to be developed
again, it is quite time consuming process. Since, the
developers have to develop it again. So, the proposal
which is been given here is a tool is being created
where the developers can store the requirements
which they had used to develop that product. They
can also edit it at times whenever the customer
changes his mind. Hence this tool acts as a repository
of data. Thus, it does not mean that it involves
documentation. It is just a repository of data and acts
as a reference for developers for future use.

1.(a)Waterfall Life cycle

1.(b) XP Life cycle

Figure 1: This figure compares the waterfall and XP life cycles

[8].

Figure 2: Agile RGM [9].

Figure 3: Spectrum of Software Development Approaches [9].

223

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-3

 An alternative approach to AGILE using Requirement Engineering

Figure 4: The tool for customer entry.

Figure 5: A web application for online storage.

IV. RESULTS AND CONCLUSIONS
The idea which is proposed and a tool which is
created can mould the agile software model. It can
considerably improve the efficiency of agile
prototype. Hence the lack of structure in Agile model
is also overcome with the help of this tool. So far an
online as well as an offline tool is proposed which
will act as repository of data. (Fig 4, Fig 5).

V. FUTURE WORK
Agile RGM can be extended to accommodate large
sale systems and MLC systems. Validate the Agile
RGM by using it to an organization.

REFERENCES
[1] Barnett, L.,”Best Practices for Large-Scale Agile

Development”. Agile Journal, pp 39-45. Jul 2006.

[2] Beck, K. et al. (2001): Manifesto for Agile Software
Development. Snowbird, Utah, 2001.

[3] A. Cockburn and L. Williams. The costs and benefits of pair
programming. In eXtreme Programming and Flexible
Processes in Software Engineering XP2000, pages 223-247.
Addison-Wesley, 2000.

[4] Conboy, K,Fitzgerald, B, “'Method and Developer
Characteristics for Effective Agile Method Tailoring: A
Study of XP Expert Opinion”, Acm Transactions On
Software Engineering And Methodology, pp 214 – 221,
2010.

[5] T. Hildenbrand, M. Geisser, T. Kude, D. Bruch, T. Acker,
"Agile Methodologies for Distributed Collaborative
Development of Enterprise Applications", In workshop on
Engineering Complex Distributed Systems (ECDS),
Complex, Intelligent, and Software Intensive Systems
(CISIS), pp. 540-545, 2008.

[6] J. Patton, “Ambiguous Business Value Harms Software
Products,”. IEEE Software, vol. 25, no. 1, pp. 50-51,
January/February 2008.

[7] A. Qumer and B. Henderson-Sellers, “A framework to
support the evaluation, adoption and improvement of agile
methods in practice”, Journal of Systems and Software, vol.
81, no. 11, pp. 1899-1919, 2008.

[8] J. Shore and S. Warden “ The Art of Agile Development”,
O'Reilly Media, 2007

[9] S. Soundararajan and J. Arthur, “A soft-structured agile
framework for larger scale systems development”, In
Engineering of Computer Based Systems, ECBS 2009. 16th
Annual IEEE International Conference and Workshop on the,
pages 187 -195, April 2009.

[10] http://en.wikipedia.org/w/index.php?title=Agile_software_de
velopment&oldid=420668857/,2012.Online; accessed 02-
July-2012.

[11] http://en.wikipedia.org/w/indexphp?title=Waterfall_model&o
ldid=420124129/, 2012. Online; accessed 02-July-2012.

224

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-3

	AN ALTERNATIVE APPROACH TO AGILE USING REQUIREMENT ENGINEERING
	Recommended Citation

	AN ALTERNATIVE APPROACH TO AGILE USING REQUIREMENT ENGINEERING

