
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 1 Issue 3 Article 7

January 2012

An Efficient Regression Testing By Computing Coverage Data For An Efficient Regression Testing By Computing Coverage Data For

Software Evolution Software Evolution

Machani SivaPrasad
CSE dept, JNTUA College of Engineering, Anantapur, Andhra Pradesh,India, msivaprasad88@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
SivaPrasad, Machani (2012) "An Efficient Regression Testing By Computing Coverage Data For Software
Evolution," International Journal of Computer Science and Informatics: Vol. 1 : Iss. 3 , Article 7.
DOI: 10.47893/IJCSI.2012.1033
Available at: https://www.interscience.in/ijcsi/vol1/iss3/7

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol1
https://www.interscience.in/ijcsi/vol1/iss3
https://www.interscience.in/ijcsi/vol1/iss3/7
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol1/iss3/7?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Available online at www.interscience.in�

�

�

An Efficient Regression Testing By Computing
Coverage Data For Software Evolution

Machani SivaPrasad
M.Tech in CSE dept, JNTUA College of Engineering, Anantapur, Andhra Pradesh,India

E-mail : msivaprasad88@gmail.com

Abstract - Software systems is evolve continuously during development and maintenance. After software is modified regression testing
is applied to software to ensure that It behaves intended and modifications not negatively impacts its original functionality .It is time
consuming to rerun test suite T of program Pi on modified program Pi+1.So there are many regression testing techniques are there for
doing regression testing. These are based on coverage data. So computing coverage data for Pi+1 without rerunning all test cases is the
problem for doing regression testing of program Pi+1.This paper proposed a new approach that computes coverage data with selecting
test cases T’ for the subsequent versions of the software .By computing coverage data for subsequent version of software on without
rerunning entire test suit T we can improve overall time taken to retest the evolving software using Regression testing.

 This paper focus on improving the performance of regression testing for software evolve continuously during maintenance, by
implementing a new approach for regression testing by computing coverage data for evolving software using dataflow analysis and
execution tracing .

Keywords-Software Engineering, Software testing , Regression testing ,Coverage data.

.

I. INTRODUCTION

As software systems mature maintenance activities
is dominant. Reports estimate that regression testing
consumes as much as 80 percent of the testing budget [1]
and 50 percent of development effort in development
life cycle spent on maintenance because evolving
software by inducing changes[2][3]. Software System is
continuously evolve because of adaptive, corrective and
perfective. Thus the more effort is required to verify that
changes induced affects it original functionality of the
software .So regression testing is applied to the modified
version of the software to ensure its original behavior.
One approach to regression testing saves the test suite T
used to test one version of the program Pi and uses it to
test the next (modified) version of the program Pi+1. As
it is sometimes too expensive or time-consuming to rerun
all of T on Pi+1, researcher s have developed techniques
to improve the efficiency of the retesting . For example,
regression test selection (RTS) techniques select a subset
of T as T’ and use it to test Pi+1(Nos.4,5,6) . If the RTS
technique is safe, then the test cases that it omits(i.e., T –
T’) will give the same results on Pi and Pi+1, and thus,
do not need to be rerun on Pi+1Studies have shown that
RTS can be effective in reducing the time and cost of
regression testing.

Many of these regression testing techniques use
coverage data collected when testing Pi using T to assist
the testing that should be performed on Pi+1. For
example, several RTS techniques collect coverage data,

such as which statements[7] , branches, or methods
[8][9] are covered when Pi is executed with T, for testing
Pi+1. As subsequent versions of Pi are created, coverage
data of predecessor version are needed for regression
testing tasks. In presentations of these regression testing
techniques, especially to practitioners, there are usually
questions about how the coverage data will be obtained
for these subsequent versions, when only a subset of T is
used to test Pi+1. The coverage data on Pi for those test
cases in T that are not run on Pi+1 (i.e., T –T’) cannot
simply be copied for Pi+1 unless the development
environment maintains a mapping between entities (such
as statements, branches, and methods) in Pi and entities
in Pi+1. Because this mapping is not typically
maintained, another approach for obtaining the coverage
data for test cases in T – T’ is needed[10].

In this paper we developed new approach for
regression testing by computing coverage data for
selecting test case to achieve savings in testing time of
continuously evolving software. Our approach involves
several steps First step is indentifying the program
entities in the program for which to compute the
coverage data in the prrogram. Second stepby applying
execution tracing and dataflow analysis at dynamically
computing coverage data for identified program entities
in the step1. Third step apply first two steps on different
versions of the software and compute coverage data to
identifies changed entities in the two versions of the
application and selected test cases to test changed
program entities in the software application .

International Journal of Computer Science & Informatics, Volume-I, Issue-3

176

An Efficient Regression Testing By Computing Coverage Data For Software Evolution �

�

�

�

Public class Grade{
 Public char ComputeGrade(int
totalMarks, int midMarks) {

S1 char Grade;
S2 if(totalMarks>70){
S3 if(midMarks>80){
S4 Grade='A';
 }else{
S5 Grade='B';
 }
 }
S6elseif(totalMarks>60&&totalMarks<70)
{
S7 if(midMarks>80) {
S8 Grade='C';
 } else /*change*/
S9if(midMarks<80&&midMarks>70){
S10 Grade='D';
 }else {
 S11 Grade='E';
 } else {
 S12 Grade=\'F';
 }
 S13 return Grade;
 }
}

Public class Grade{
 Public char ComputeGrade(int
totalMarks, int midMarks) {

S1 char Grade;
S2 if(totalMarks>70){
S3 if(midMarks>80){
S4 Grade='A';
 }else{
S5 Grade='B';
 }
 }
S6elseif(totalMarks>60&&totalMarks<70)
{
S7 if(midMarks>80) { /*change*/
S8 Grade='C';
 } else {
S9 Grade='D';
 }
 } else {
 S10 Grade='E';
 }
 S11 return Grade;
 }
}

Public class Grade{
 Public char ComputeGrade(int
totalMarks, int midMarks) {

S1 char Grade;
S2 if(totalMarks>70){
S3 if(midMarks>80){
S4 Grade='A';
 }else{
S5 Grade='B';
 }
 }else
S6
if(totalMarks>60&&totalMarks<70){
S7 Grade='C';
 } else {
S8 Grade='D';
 }
S9 return Grade;
 }
}

Fig1.Three versions of the program Pi, Pi+1,Pi+2

2. RELATED WORK

 In this section we consider a related work that
illustrate the problem we are solving. In the fig 1 there
three versions of the programs Pi, Pi+1, Pi+2 that
evolves with changes to one another. Now test suit T in
fig2 is used to test the program Pi and found that
coverage data CDi in the form of matrix as shown in
fig2.after doing some changes to the program Pi. it
evolves to Pi+1 now we want to test program Pi+1 to
ensures that previous functionality does not affect apply
regression testing without rerunning all test cases by
select some test case as T' we need coverage data of
program Pi that is available as CDi. so for doing
regression testing for program Pi we have no problem.
Now program pi+1 is evolves after adopting some
changes as program Pi+2.Now we want to check the
previous functionality of the program Pi+2 does not
affect by doing regression testing So coverage data
CDi+1 for the program Pi+1 is needed to perform
regression test on program Pi+1.There two ways to
compute the coveragedataCDi+1forprogram Pi+1.One is
rerun test suit T on program Pi+1 which is time
consuming process for regression test. So Second our
proposed method with running application with our
frame work by some techniques in order to achieve

greater savings in time of regression testing to
continuously evolving software. �

Test cases Input
t1 Total Score=71,midScore=81

t2 Total Score=71,midScore=71
t3 Total Score=64,midScore=82

t4 Total Score=51,midScore=72

Fig 2 Test Suite T

 Coverage Data

 S1 S2 S3 S4 S5 S6 S7 S8 S9

T1 1 1 1 1 0 0 0 0 1

T2 1 1 1 0 1 0 0 0 1

T3 1 1 0 0 0 1 1 0 1

T4 1 1 0 0 0 1 0 1 1

 Fig 3 Coverage data CDi of program Pi on T

3. COMPUTING COVERAGE DATA

 Our proposed system to compute coverage data for
the software applications with out rerunning testsuit
using execution tracing and dataflow analysis . Studies

International Journal of Computer Science & Informatics, Volume-I, Issue-3

177

An Efficient Regression Testing By Computing Coverage Data For Software Evolution �

�

�

�

shown that by computing coverage data without
rerunning entire test suite by selected test cases can
provide significant savings in regression testing time.
Thus, our proposed system can be an important part of
an efficient regression testing process.

 Proposed system involves 2 phases to compute the
coverage data without rerunning entire test suite. First
step is indentifying the program entities in the program
for which to compute the coverage data in the program
called as coverage criteria. Second step by applying
execution tracing and dataflow analysis at dynamically
computing coverage data for identified program entities
in the step1.

A. Coverage Criteria

 There are different coverage criterias basing upon
program entites that considered while testing the
program.some program entites considered in our
approach are stament methods, classes, exceptions.
Different coverage criteria is described below.

i Statement Coverage

 This criteria reports whether each executable
statement is encountered. Declarative statements that
generate executable code are considered executable
statements. Control-flow statements, such as if, for, and
switch are covered if the expression controlling the flow
is covered as well as all the contained statements.
Implicit statements, such as an omitted return, are not
subject to statement coverage

ii Method Coverage

 This criteria reports whether you invoked each
function or procedure. It is useful during preliminary
testing to assure at least some coverage in all areas of the
software.

iii Call Coverage

 This Criteria reports whether you executed each
function call. The hypothesis is that bugs commonly
occur in interfaces between modules.

iv Condition Coverage

 Condition coverage reports the true or false outcome
of each condition. A condition is an operand of a logical
operator that does not contain logical operators.
Condition coverage measures the conditions
independently of each other.

B Execution tracing and Dataflow analysis

i Execution tracing

 An execution trace of program P for some test suite
T is the sequence of program entites is executed against
T. for above example the execution traceis shown below

Test cases Execution trace

t1 S1,S2,S3,S4,S9

t2 S1,S2,S3,S5,S9

t3 S1,S2,S6,S7,S9

t4 S1,S2,S6,S8,S9

Fig 3 Execution trace of program Pi on T

ii Dataflow Analysis

 It is the process of collecting information about the
way the variables are used , defined in the program.
Analysis is done at basic block granularity.Dataflow
analysis can be performed at both static and dynamic
levels.But in our approach we use dynamic dataflow
analysis to compute coverage data

 i Static dataflow analysis

 In static level Identify potential defects, to Analyze
source code with out execution of code

 ii Dynamic dataflow analysis

 In dynamic level involves actual program
execution..Identify paths to execute them.Paths are
identified based on data flow diagrams.dynamic dataflow
analysis is carried by fallowing steps

 1. Execute the program
 2. Draw a data flow graph from a program.
 3. Select one or more coverage criteria.
 4. Identify paths in the data flow graph satisfying the

coverage criteria.

4. EXPERIMENT DESIGN

 To evaluate our technique, we develop an java frame
work called Dynamic Code Analyzer (DCA). Dynamic
Code Analyzer that implements our techniques used it to
conduct empirical studies to compute coverage and
estimates time for computing coverage data for
regression testing. For our experiment we used three
versions GDownloader.

 GDownloader is an downloading software developed
in java that has six versions and 3,000-4,000 lines of
code, depending on the version. Some of these versions
have additional versions that can be obtained by enabling
different numbers of faults: v1 has seven versions, v2 has
seven versions, v3 has 10 versions, and v5 has nine

International Journal of Computer Science & Informatics, Volume-I, Issue-3

178

An Efficient Regressio

versions. Using these versions, we perform
on 3 versions of GDownloader.
GDownloader version 1,version2,version3
average coverage of 67.76 , 77.15,88.15
results shown in figure .

Fig 5 : Results of experiment for compu
data

After computing coverage data can
coverage data of 3 versions of software to
changed entites for doing regression testin
testcases of that changed entites to regressi
software. The results of our experiment sho
will be significant savings in time of regr
by computing coverage data. The results
for doing regression are shown in fig6

Fig5 : Results of experiment for doing regr

 5. CONCLUSION AND FUTURE WO

 In this paper we presented a new appro
regression testing by computing coverage
incurring the expense of rerunning entire
we can achieve greater savings in ti
continuously evolving software by efficie
test. The frame work developed for testin
consists all our technique to computing c
for different versions software using execu
dynamic dataflow analysis achive greater sa
of regression testing for continuously evolv

�

��

��

��

��

���

�	
���� �	
���� �	
����

�

�����

������

������

�	
���� �	
���� �	
����

ssion Testing By Computing Coverage Data For Software Evolution �

�

�

rmed our studies
. By testing
n3. achieve, on
.15 percent the

puting coverage

an compare the
e to identify the
ing .so that run
ssion test of the
shows that there
gression testing

ts of time taken

gression test

ORK

proach for doing
ge data without
re test cases. so

time testing
cient regression
sting application
g coverage data
cution trace and
r savings in time
olving software.

In future work we extend obtain
by after tracing and dynamic analys
performance in regression testing . An
extending this work is by conside
prioritizations along with selection
quality of the testing.

6. REFERENCES

[1] C. Kaner, “Improving the
Automated Test Suites,” Pro
Conf., May 1997.

[2] B. Beizer, Software Testing
Nostrand Reinhold, 1990.

[3] H.K.N. Leung and L.J. Wh
Regression Testing,”Proc. IEE
Maintenance, pp. 60-69, Oct. 1

[4] T. Ball, “On the Limit of Con
for Regression Test Selecti
SIGSOFT Int’l Symp. S
andAnalysis, pp. 134-142, Mar

[5] Y.F. Chen, D.S. Rosenblum
“Testtube: A System forSe
Testing,” Proc. 16th A
Conf.Software Eng., pp. 211-22

[6] A. Orso, N. Shi, and M.J.
Regression Testing toLarge S
Proc. 12th ACM SIGSOFT Sy
Software Eng., pp. 241-252, No

[7] F. Vokolos and P. Frankl, “Py
Test Selection Tool Based on T
Proc. IEEE Int’l Conf. Relia
Safety of Software Intensive
June 1997.

[8] A. Orso, N. Shi, and M.J.
Regression Testing to Large S
Proc. 12th ACM SIGSOFT Sy
Software Eng., pp. 241-252, No

[9] G. Rothermel and M.J. Harrold
Regression Test Selection T
Trans. Software Eng. and Meth
2, pp. 173-210, Apr. 1997.

[10] Pavan Kumar Chittimalli
Harrold,” Recomputing Covera
Assist Regression Testing".
July/ August 2009.

���

ain the dynamic slice
lysis to achieve more
 Another scope for the
idering the test case
ion for improve the

Maintainability of
Proc. Quality Week

ng Techniques. Van

hite, “Insights into
IEEE Conf. Software
. 1989

ontrol Flow Analysis
ction,” Proc. ACM

Software Testing
ar. 1998.

lum, and K.P. Vo,
Selective Regression

ACM/IEEE Int’l
222, May 1994.

.J. Harrold, “Scaling
 Software Systems,”

 Symp.Foundations of
 Nov. 2004.

Pythia: A Regression
n Text Differencing,”
liability, Quality and
e Systems, pp. 3-21,

.J. Harrold, “Scaling
e Software Systems,”
 Symp.Foundations of
 Nov. 2004.

old, “A Safe, Efficient
 Technique,” ACM
ethodology,vol. 6, no.

i and Marry Jean
erage Information to
". IEEE Transaction

International Journal of Computer Science & Informatics, Volume-I, Issue-3

179

	An Efficient Regression Testing By Computing Coverage Data For Software Evolution
	Recommended Citation

	An Efficient Regression Testing By Computing Coverage Data For Software Evolution

