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Studies of  Manufacturing Process Control:
A Technological Transfer of  Soft Computing*

J. P. Panda1

R. N. Satpathy2

Abstract:

The field of soft computing embraces several techniques that have been inspired by nature but are
mathematical. These techniques are artificial neural networks, fuzzy logic and evolutionary algorithms.
Often these techniques are considered part of artificial intelligence, however the name artificial
intelligence is more properly given to techniques which try to capture and emulate biological intelligence,
such as expert systems and thinking computers.  This paper focuses on the technology transfer issues
and solutions when using soft computing for off line control of manufacturing processes. This paper
will discuss each of these three techniques – neural networks, fuzzy logic and evolutionary algorithms
- in turn and how they might be used in manufacturing. The kind of problems these techniques are best
suited for will be defined, and competing techniques will be compared and contrasted.
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1.  Introduction

New techniques from soft computing have attracted
the interest of manufacturing researchers in academia,
government and industry. These techniques include
artificial neural networks, fuzzy logic and evolutionary
computing. While these computational techniques
inspired by nature have shown promise in many
manufacturing applications such as robotics, machine
vision, process control, process planning and
scheduling, there is little in the literature on their
practical use. Moving these techniques from simulated
data sets, toy problems or laboratory settings to real
industrial applications is a large and uncertain step.

However, there are a wealth of difficult and real
problems in manufacturing that could benefit from soft
computing  techniques. These problems often involve
modelling and optimization of complex systems, and
the computational intelligence techniques cover the
middle ground of the modelling continuum. That is,
they range from structured and articulated knowledge

to continuous empirical models. These techniques are
often an improvement over unarticulated wisdom,
which is found in all manufacturing environments, but
do contain the certainty or elegance of analytic models
derived from first principles.

2.   Artificial Neural Networks

Artificial neural networks are computing mechanisms
roughly modelled after the biological brain. Neural
networks depend on an organized group of simple
elements, called neurons. Neurons are uni-directional
computing elements that receive multiple inputs, sum
them, then produce a single output through a nonlinear
transfer function f (see figure 1). Neurons exist in
parallel (a layer) and in series. Weighted connections
exist between neurons to move the output of a neuron
to other neurons. A neural network can be quite small
and simple, but is more likely to be large (many neurons
in multiple layers) and complex. The biological human
brain has about 1014 weighted connections
(synapses), so even a very large artificial neural
network is a poor substitute for any living brain.

Figure 1. Typical neuron and structure of a neural network.
1, pp 31 to 37.
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Neural networks usually begin with their weights in a
random state, which is “untrained.” The network
weights are iteratively evolved to a fixed (trained) state
by repeated data input and error calculation. In many
real manufacturing problems, theory and analytic
relationships drawn from first principles are not
adequate to explain the many complexities, interactions
and imperfections. Similarly, many problems do not
adhere to well known statistical techniques such as
linear regression or clustering algorithms. For these
problems, a neural network may provide the only
reasonable mathematical solution technique. In fact,
a neural network should be considered as a technique
of last resort where other techniques have failed. This
is because neural networks have some serious
drawbacks. They are empirical models and depend
heavily on data.

However, a neural network can be a successful
technique for manufacturing applications. These
include real-time control systems, diagnostic systems,
machine vision systems, robotic and AGV control
systems, and others. In this paper the author has used
neural network models for manufacturing process
control and optimization. These are usually static
models which use the raw material characteristics, the
product design specifications, the ambient conditions,
operator information and actions, the machine settings
and so on to predict outcomes of the process. Model
dynamics can be added by using feedback during the
process. The outcomes may be quality indicators, such
as blemishes or incomplete joinings, or they may
adherence to specifications and tolerances, or they
may be some surrogate correlated with an outcome
measure of interest. If such models mimic the
manufacturing process with fidelity, they can be used
for a variety of purposes. They can be used to
interactively select manufacturing conditions and
machine settings which produce the best outcome.
They can be used to select design features which
improve manufacturability. They can be used to
estimate proper settings for new products without trial-
and-error testing. They can be used to identify the
most important variables of a process. They can be
used with an optimization algorithm to directly identify
optimal settings or conditions.

Here author has used neural networks to model the
following processes when working with industrial
partners: injection mouldings, plastic pipe extrusion,

ceramic casting, metal furniture assembly, wave
soldering and abrasive flow machining. These are very
diverse processes but they share important common
elements. First, theoretic or analytic models were not
adequate for the processes. Second, they exhibited
non-linear behaviour with variable interactions. Third,
observational data was available. Fourth, the
companies desired to improve control of the processes
by systematic selection of the controllable variable
settings. However, each process required a somewhat
different approach depending on the company’s
objectives, the available data, the kind and number
of process variables, and the repeatability of the
process.

Figure 2. Hierarchical system of six neural networks to model a
wave solder process.

Figure 2 shows a hierarchy of six neural networks
that were built to model a wave solder process for
Lockheed Martin. Two initial neural networks use the
circuit board design parameters and the process
settings (line speed and pre-heater temperature) to
predict the board surface temperature at each bank
of pre-heaters. These predictions are added to the
design and process settings and are used to predict
the mean surface temperature of the board at the solder
wave and the rate of change of temperature at the
solder wave. The variance of temperatures over
different places on the board surface is also predicted
using the prediction of mean temperature at the wave.
All of the thermal predictions at the wave are combined
with the initial variable set (board design and process
settings) to predict the solder quality of the board using
a categorical metric of excellent, good and fair. The
ultimate goal was to predict solder quality so that it
could be optimized, and the thermal condition of the
board at the solder wave was highly correlated with
solder quality. However, the thermal condition could
not be regularly observed during production and could
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only be observed during special experimentation used
to gather data for the project.

Therefore, during production, the thermal condition
had to be estimated by the neural networks, motivating
the need for the hierarchical model. Another use of a
neural network model is shown in figure 3. This neural
network modelled a ceramic casting process for a
large sanitary ware manufacturer. After the neural
network was finalized, it could be used to analyze
which process variables were most important and their
general effects on the process. Holding all other
process variables constant (at their minimum, mean
and maximum values, respectively), plant temperature
was varied from its minimum to its maximum. It is
easy to see from figure 3 that there is a non-linear
effect that is more pronounced when the other
variables are near their minimum values than when
they are near their maximum values, indicating
significant interactions.

Figure 3. Identifying the effects of plant temperature on a
ceramic casting  process.

3. The fuzzy concept

3.1 Fuzzy Logic

In a seminar paper written in 1965  Lotfi A.
Zadeh[5:338-353] described the properties of fuzzy
sets, a class of objects with a continuum of grades of
membership in the interval (0,1). This idea stands in
stark contrast to conventional set theory in which
objects have only membership (characteristic
function) values taken from the doubleton set {0,1}.
Each object x in a fuzzy set X is assigned a grade of
membership by a membership function usually denoted
by  (x) whose values range between zero and one.
Many people tend to confuse the idea of a

membership function  (x) with that of a probability
density function f(x), however, this is correct since
the integral of f(x) must sum to 1. There is no such
restriction of  (x). The foundation of fuzzy logic is
fuzzy set theory, first proposed by Bellman and Zadeh
[1970], Wang and Wang [1985a, b] Soh and Yang
[1996], Yang and Soh [2000] and Rao [1987],
applied fuzzy optimization techniques.

3.2.   Introduction to Fuzzy Sets

Zadeh makes a case that humans reason not in terms
of discrete symbols and numbers, but in terms of fuzzy
sets . These fuzzy terms define general categories,
but not rigid, fixed collections. The transition from one
category-concept, idea, or problem state-to the next
is gradual with some states having greater or less
membership in the one set and then another. From
this idea of elastic sets, Zadeh proposed the concept
of a fuzzy set. Fuzzy sets are functions that map a
value that might be a member of the set to a number
between zero and one indicating its actual degree of
membership. A degree of zero means that the value is
not in the set, and a degree of one means that the
value is completely representative of the set. This
produces a curve across the members of the set. There
are many books that have been written on the subject
of fuzzy sets since Zadeh introduced the fuzzy set
concept in [1965, 1-19].

3.3.    Membership Functions

Let X be a set of objects, called the universe, whose
elements are denoted x. Membership in a subset A of
X is the membership function,  from X to the
real interval [0,1]. The universe is all the possible
elements of concern in the particular context. A is
called a fuzzy set and is a subset of X that has no
sharp boundary.   is the grade of membership x in A.
The closer the value of  is   to 1, the more x belongs
to A. The total allowable universe of values is called
the domain of the fuzzy set. The domain is a set of
real numbers, increasing monotonically from left to
right where the values can be both positive and
negative. A is completely characterized by the set of
pair

Studies of  Manufacturing Process Control: A Technological Transfer of  Soft Computing
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3.4   Operation on Membership Functions

3.5    Fuzzy Systems

Fuzzy logic is an extension of Boolean logic, where
an item can have partial membership in a set.
Membership degree ranges from 0 (definitely not in
the set) to 1 (definitely in the set). A simple example is
shown in figure 4, where plant temperature is shown
as a Boolean variable (not hot or hot) versus a fuzzy
variable (from not hot to hot). It is readily seen that a
fuzzy variable has more information than a Boolean
variable and more properly expresses transitions.
Fuzzy logic should not be confused with probability;
fuzzy logic connotes imprecision rather than
uncertainty. Fuzzy logic is useful as a rigorous and
numeric way to handle qualitative variables. It has
been most notably used in control systems, but there
are many other possibilities in manufacturing, especially
in the development of expert systems and the analysis
of imprecise data.

Figure 4. Example of difference between regular and fuzzy logic
for plant temperature.

Development of a fuzzy logic system can be time
consuming and tedious. All relevant variables must
be identified, then descriptors determined. The range
and shape of the membership functions for each
descriptor must be specified. For example, in figure
5, mold condition is an ordinal measure ranging from
0 to 10 in ceramic casting, where 0 indicates an
extremely dry mold and 10 indicates an extremely
wet mold. For this variable, seven descriptors were
chosen, ranging from very dry to very wet. The
membership functions are the traditional triangular or
trapezoidal shapes. Note the regions of descriptor
overlap - it is these overlaps that allow fuzzy logic to
make smooth transitions. After the variables, their

descriptors and the membership functions are defined,
a set of rules must be developed to invoke fuzzy
reasoning. These are generally of the IF/THEN or
modus ponens type, where the IF section contains
the premise and the THEN section contains the
consequents (conclusions or actions). The bottom of
figure 5 shows a fuzzy associative memory (FAM)
which is a compact table of rules. For example, if
temperature (Temp) is low and the humidity is medium
and the mold age is old, the mold condition is very
wet. Rules are processed using sequential reasoning
(forward or backward chaining) and final results are
usually defuzzified to a non-fuzzy (crisp) answer.

Figure 5. Membership functions and fuzzy associate memory
for mold condition.

Figure 6. Schematic of hierarchy of two fuzzy rule bases for
ceramic casting.

Figure 7. Prediction surface of cast time (z) vs. cast rate (x) and
mold condition (y).

Interscience  Management  Review, Vol.I/1
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Figure 6 shows the schematic of a hierarchical fuzzy
rule base developed in support of the modeling of the
ceramic casting process mentioned earlier . These rule
bases were necessary because not all the important
variables were quantitative or had exact
measurements, so they could not be modeled with a
neural network. The first rule base takes the plant
ambient temperature and humidity combined with the
age of the mold in weeks and predicts the mold
condition on an ordinal scale of 0 to 10. This
prediction is paired with the continuous variable of
casting rate (predicted by a neural network) for the
second rule base. This rule base predicts the casting
time in minutes (it is defuzzified to a crisp variable
using the centroid method). The two rule bases were
developed by eliciting the expertise of the plant
engineers and foremen, and the membership functions
were developed by analyzing past history of the values
of the variables (temperature, humidity, mold age,
etc.). The rules, membership functions and descriptors
were refined until the hierarchical rule bases produced
an suitable prediction surface (figure 7). Note that
the surface is highly non-linear but smooth, properties
that a properly crafted fuzzy rule base will possess.
The knowledge elicitation and refining steps of the
development process are time consuming, and can
be frustrating and tedious for the experts involved.
However, the development is a one-time activity while
the fuzzy system may be used daily in decision making
for many years to come. Like neural networks,
development of a fuzzy rule base will require someone
with expertise in the area and specialized software,

4. Evolutionary Computing

The field of evolutionary computing (EC) includes the
following subjects: genetic algorithms, evolutionary
strategies, genetic programming and classifier systems.
All are meta-heuristics inspired by the process of
biological evolution where an initially random
population evolves iteratively to a superior, or
optimized, state. Solutions are selected for
recombination based on their objective value function,
where a better value yields a higher fitness. The
recombination, called crossover, usually involves two
selected solutions (parents) that are combined to form
one or more new solutions (children). The children
solutions are randomly perturbed slightly (mutation)

to move the search to new regions. Evolutionary
computing is generally used for optimization, whether
it be of a continuous function, a combinatorial problem,
or finding optimal rules to explain data. The
advantages of evolutionary computing over more
traditional approaches such as mathematical
programming are that a population (small group) of
superior solutions are obtained, no assumptions about
form or derivatives are made, the iterative nature is
usually diminishing in improvements so the
computational time needed is flexible, EC is very
flexible and can accommodate almost any problem,
and EC is easy to code and to understand. Moreover,
EC is a global technique, that is, it is resistant to
becoming trapped in local optima. Disadvantages of
evolutionary computing are that it is stochastic and
may return different solutions depending on random
number seed, it cannot guarantee convergence or
optimality except under very restrictive conditions, and
it may not be computationally efficient compared to
other problem-specific methods. The advantages of
not specifying a functional form that is differentiable,
continuous and so on is a tremendous advantage in
real world problems. It is also advantageous to use a
global technique since it is usually unknown whether
a surface is convex, a condition required for gradient
methods to converge to the global optimum. The ease
of coding and the flexible computing time are added
inducements for the use of EC on real manufacturing
problems in optimization.

 To use EC, the solution space must be encoded as a
series of bits, floating point numbers, or as a
permutation. The traditional genetic algorithms uses a
bit encoding, however this is not required, or even
desirable in many instances. Solutions must be able
to be compared on a numeric basis using an objective
function, which translates to fitness in EC. The better
the objective function, the more likely the solution will
survive in later iterations and also produce children
solutions. Poorly evaluated solutions tend to die off
immediately. To summarize, the important steps to
using EC are an encoding, crossover and mutation
algorithms and a method of calculating the objective
function value of a solution. There are problem-
specific parameters that must be set, such as
population size, probability of mutation and termination
criteria, but EC is robust to a wide variety of these
settings.

Studies of  Manufacturing Process Control: A Technological Transfer of  Soft Computing
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Consider the following example for the problem of
optimizing the design of a local area network (LAN)
within a manufacturing plant. The number of computer
sites are fixed and their locations are known. The
concern is to specify the communications cables
between the links so that the LAN meets a certain
network reliability objective but the cost of the
network is minimized. The problem can be encoded
for EC as follows in figure 9. The 0/1 encoding shows
the cables present for parent 1. Two parents are
combined using single point crossover to form a child,
then the child is slightly perturbed (bits changed with
a small probability) to become the final, mutated child.

This LAN design problem is well handled by EC,
with work by the author showing vast improvement
over branch-and-bound methods or greedy search
methods . Other optimization problems, such as
production scheduling, product design , process
planning and plant layout are suited to EC.

Figure 8. Encoding, crossover and mutation for LAN design
optimization.

5. Conclusion

Many manufacturing environments can benefit from
the judicious use of these techniques in prediction,
classification, decision making and optimization tasks.
While the development effort will require people with
knowledge and experience in these methods and may
require specialized software and hardware, the system
itself should be able to be operated by almost anyone.
Caution should be exercised however about the
widespread use of these techniques. They should be
regarded as a final alternative after more

straightforward and simpler methods have been
exhausted. If a linear regression model is adequate,
then a neural network should not be used. If there is
an analytic description of the process that works well,
then an empirical or knowledge based approach
should not be used. When considering manufacturing
uses of computational intelligence, the timeline is even
more recent. Neural networks began in the field of
cognitive neuroscience, and has been dominated by
that field along with computer science and electrical
engineering. Fuzzy logic began in electrical engineering,
and it is control applications for which it is still most
known. Evolutionary algorithms were founded by
computer scientists, mathematicians and electrical
engineers, and these fields still produce most of the
research in the area.However, for many real
manufacturing problems, only a technique that is flexible
and is based on data and knowledge is appropriate.
In those cases, using soft computing should be
regarded as a viable alternative that can work even in
the most traditional and low technology circumstances.
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