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Abstract- In this paper, a hyperbolic shear deformation theory taking into account transverse shear deformation effects, is 
presented for the bending analysis of thick isotropic plates subjected to linear thermal load. The displacement field of the 
theory contains three variables. The hyperbolic sine and cosine function is used in the displacement field in terms of 
thickness coordinate to represent the effect of shear deformation. The most important feature of the theory is that the 
transverse shear stresses can be obtained directly from the use of constitutive relations, satisfying the stress free boundary 
conditions at top and bottom surfaces of the plate. Hence, the theory eliminates the need of shear correction factor. 
Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. 
Results obtained for bending analysis of isotropic plates subjected to linear thermal load are compared with those of other 
higher order theories, lower order theories to validate the accuracy of the present theory. 
 
Keywords- Shear deformation, isotropic, shear correction factor, transverse shear stress, thermal load\ 
 

 
I. INTRODUCTION  

 
Thick beams and plates, either isotropic or an 
isotropic, basically form two-and three-dimensional 
problems of elasticity theory. Reduction of these 
problems to the corresponding one- and two-
dimensional approximate problems for their analysis 
has always been the main objective of research 
workers. As a result, numerous refined theories of 
beams and plates have been formulated in last two 
decades which approximate the three dimensional 
solutions with reasonable accuracy. 
 
The shear deformation effects are more pronounced 
in the thick plates when subjected to transverse loads 
than in the thin plates under similar loading. The 
shear deformation effects are more significant in the 
thick plates. These effects are neglected in Classical 
Plate Theory (CPT). In order to describe the correct 
bending behavior of thick plates including shear 
deformation effects and the associated cross sectional 
warping, shear deformation theories are required. 
This can be accomplished by selection of proper 
kinematic and constitutive models.\ 
 
A. Various Shear Deformation Theories 
Shear deformation theories can be classified into two 
major classes on the basis of assumed fields: 
(1) Stress based theories   
(2) Displacement based theories.  
 
The stress based theories are derived from assumed 
stress field of axial stresses, which are assumed to 
vary linearly over the thickness of the plate. The 
transverse normal and shear stresses are then derived 
from the equilibrium equations of three dimensional 
problems in the theory of elasticity. The governing 

equations of the theory are derived using a stationary 
variational theorem. 
 
The displacement based theories are as follows: 

A. Classical plate theory (CPT) 
B. First order shear deformation theory (FSDT) 
C. Second order shear deformation theory 

(SSDT) 
D. Higher order shear deformation theory 

(HSDT) 
E. Parabolic shear deformation theory (PSDT) 
F. Trigonometric shear deformation theory 

(TSDT)  
G. Hyperbolic shear deformation theory  

(HYDT)  
H. Exponential  shear deformation theory  

(ESDT)  
 

A. Classical Plate Theory (CPT) 
Well-known classical plate theory (CPT) is based on 
the Kirchhoff hypothesis that straight lines normal to 
the undeformed midplane remain straight and normal 
to the deformed midplane and do not undergo 
thickness stretching (i.e., inextensible). The 
displacement field of the theory is as: 

, , ( )w wu = z v = z w = w x, y
x y

∂ ∂
− −

∂ ∂

 

 (1) 

Where u, v and w are the displacement components in 
the x, y and z directions respectively.  

 
B.  First-order Shear Deformation Theories (FSDT): 
To take into account the effect of shear deformation 
FSDT has been developed based on the hypothesis 
that the straight line normals to the mid-surface 
before deformation remains straight but not 
necessarily normal to the mid-surface after 
deformation. In FSDT transverse shear strain 
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distribution is assumed to be constant through the 
thickness and thus shear correction factors are 
required to take into account appropriate strain 
energy due to shear deformation. 
Mindlin [1] and Ressiner [2,3] works on this theory. 
The displacement field of the theory is as: 

, , ( , )0u = z v = z w = w x yφ ψ

  

 (2) 
 
where, 0w  is the unknown function of position (x, y) 
to be determined and ,φ ψ  are the rotations of a 
transverse normal about the y and x axes, 
respectively. 
 
C. Second-order Shear Deformation Theories 

(SSDT): 
The second order shear deformation theories are 
given by Naghdi [4], Pister and Westmann [5]. The 
displacement field of the theory is as: 

, 0
2,2 2

x x y z zyu = z + z ψ v = z + z ψ w = w + z + z ψφ φ φ  (3) 
 
where, o x y z x y zw , , , ,ψ ,ψ ,ψφ φ φ are the unknown 
functions of position (x, y) to be determined. 
 
D. Higher-order Shear Deformation Theory 

(HSDT): 
In order to remove the deficiencies in CPT and 
FSDT, higher order shear deformation theories are 
developed to obtain the improved global response. In 
these theories the displacement field is expanded up 
to the third power of thickness coordinate of beams to 
have the parabolic variation of transverse shear 
stresses. Teregulov [6] presented a general method of 
formulating refined theories of plates and shells, 
which is based on the expansion of displacements, 
stresses, and strains in terms of thickness coordinate. 
The displacement field of the third order shear 
deformation theory is as: 

,
2 3 2 3

x x x y y y

2 3
0 z z z

u = z + z ψ + z ξ v = z + z ψ + z ξ

w= w + z + z ψ + z ξ

φ φ

φ

 

 (4) 

where, o x y z x y z x y zw , , , , ψ , ψ , ψ , ξ , ξ , ξφ φ φ  are the unknown 
functions of position (x, y) to be determined. 
 
E. Parabolic Shear Deformation Theory: 
The third order parabolic shear deformation theories 
for the bending analysis of thick plates are developed 
by Reddy [7]. The displacement field of Reddy’s 
third order shear deformation theory is as: 

2 2

,x y
z w z w,x yh x h y

4 4
u = z v = z

3 3

w = w (x, y)

φ φφ φ
⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(5) 

where, andx yw,φ φ  are the unknown functions of 
position (x, y) to be determined. 

 
F. Trigonometric Shear Deformation Theory: 
There exists an another class of refined shear 
deformation theories wherein use of trigonometric 

function is made to take into account shear 
deformation effects. Levy [8] developed a refined 
theory for thick isotropic plate. The displacement 
field of the theory is as: 

2n+1
n x

2n+1 2n
n y n,

N N (2n+1)πzu = u z + sin
hn=0 n=0

N N N(2n+1)πzv = v z + sin w= w z
hn=0 n=0 n=0

φ

φ

∑ ∑

∑ ∑ ∑

            (6) 

where, andn n nu ,v w  are the unknown functions of 
position (x, y) to be determined and are andx yφ φ are 
the rotations of a transverse normal about the x and y 
axes, respectively. 

 
G. Hyperbolic Shear deformation theory: 
Soladetos [9] develops a hyperbolic function theory 
for analysis of thick laminated plates, wherein use of 
hyperbolic function is made to take into account shear 
deformation effects. The displacement field is given 
in eq. (8)   where, the hyperbolic function in terms of 
thickness coordinate in both the displacements u and 
v is associated with the transverse shear stress 
distribution through the thickness of plate and the 
functions ( , ) and ( , )x y x yφ ψ  are the unknown functions 
associated with the shear slopes.  
 
H. Exponential Shear deformation theory 
Akavci [10] develops an exponential shear 
deformation theory for analysis of thick laminated 
plates on elastic foundation, wherein use of 
exponential function is made to take into account 
shear deformation effects. The displacement field is 
given as follows: 

2

2

exp 2

exp 2

zz
h

zz
h

wu = z + (x, y)x

wv = z + ψ (x, y), w = w (x, y)y

φ
⎡ ⎤⎛ ⎞⎧ ⎫− −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎧ ⎫− −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦

∂
∂

∂
∂

  (7) 

where, the functions ( , ) and ( , )x y x yφ ψ  are the unknown 
functions associated with the shear slope. 
 

II. STUDY OF THERMAL LOADING ON 
THICK PLATE 
 
Various researchers like Ghugal and Kulkarni [11],  
Zhen and  Wanji [12],  Zhen and Cheng [13], 
Matsunaga [14, 15], Ali et. al. [16], Zenkour [17], 
Wang et al. [18], Nguyen and Caron [19] and 
Maenghyo Cho [20] studied the behavior of thick 
plates subjected to thermal load. This paper presents 
the bending response of thick isotropic plate under 
linearly thermal load using hyperbolic shear 
deformation theory. The principal of virtual work is 
used for deriving the governing equation and the 
boundary conditions. A simply supported plate is 
considered in the illustrative examples.  
 
III. DEVELOPMENT OF THEORY 

 
Consider the plate occupies in O – x – y - z Cartesian 
coordinate system the region: 
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0 x a; 0 y b; h/2 z h/2≤ ≤ ≤ ≤ − ≤ ≤  
where, x, y, z are Cartesian coordinates, a and b are 
the edge lengths in the x and y directions 
respectively, and h is the thickness of the plate. The 
plate is made up of homogeneous isotropic material 
and obeys generalized Hooke's law. 
A. The Displacement Field: 
    The displacement field of the present theory can be 
expressed as follows:  

1
cos sinh ( , )

2

1
cos sinh

2

w z
u = z + z h h x y

x h

w z
v = z + z h h ψ (x, y) w = w (x, y)

y h
, 

φ
∂

− −
∂

∂
− −

∂

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

      

(8) 

Here u and v are the inplane displacement 
components in the x and y directions respectively, 
and w is the transverse displacement in the z 
direction. The hyperbolic function in terms of 
thickness coordinate in both the displacements u and 
v is associated with the transverse shear stress 
distribution through the thickness of plate and the 
functions ( , ) and ( , )x y x yφ ψ  are the unknown functions 
associated with the shear slopes. 

B. Normal Strain:       x y
u vε = ,  ε =
x y
∂ ∂
∂ ∂

 

      (9) 

C. Shear Strain 

, ,xy zx yz
u v u w v w= + = + = +
x y z x z y

γ γ γ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

       (10) 

D. Stress-Strain Relationships 
 

11 12
44

12 22
55

66

0 0
0 and 0

0 0

xx x
yz yz

yy
zx zx

xy xy

TQ Q Q
Q Q Ty Q

Q

σ ε α
τ γ

σ ε α
τ γ

τ γ

⎧ ⎫⎧ ⎫ −⎡ ⎤⎪ ⎪ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥= − = ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭ ⎩ ⎭

       (11) 

 
For a linearly elastic isotropic material, stresses 
( and ),x yσ σ

 
are related to strains ( and )x y,ε ε and 

shear stresses ( ), ,xy yz zxτ τ τ are related to shear strains 

( ), ,xy yz zxγ γ γ   
T is a thermal load which consists of linear 
temperature distribution through the thickness of 
plate.  

 
E. Governing Equations and Boundary Conditions: 
Using the expressions for strains and stresses (10) 
through (12) and using the principle of virtual work 
[13], variationally consistent governing differential 
equations and boundary conditions for the plate under 
consideration can be obtained.  The principle of 
virtual work when applied to the plate leads to: 

/2

/200 00

h ab ab
x x y y xy xy

xz xz yz yzh

dxdydz q wdxdy
σδε σδε τ δγ

δ
τ δγ τ δγ−

+ +⎡ ⎤
=⎢ ⎥

+ +⎢ ⎥⎣ ⎦
∫ ∫∫ ∫∫

    (12) 
 
where, symbol δ denotes the variation operator. The 
governing differential equations obtained are as 
follows:                 

4 4 4

11 12 66 224 2 2 4

3 3 3 3

11 22 12 663 3 2 2

22
1 1

11 12 12 222 2

3 3 2 2

11 12 663 2 211 66

: (2 4 )

( 2 )

( ) ( ) 0

: ( 2 )

w w w
w D D D D

x x y y

S S S S
x y x y x y

TT
TD TTD TD TTD

x y

w w
S S S SS SS

x x y x

δ

φ ψ φ ψ

φ
δφ

∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ − + +

∂ ∂ ∂ ∂ ∂ ∂

∂∂
+ + + + =

∂ ∂

∂ ∂ ∂ ∂
+ + − +

∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2
1

12 66 11 1255

3 3 2 2

22 12 66 66 123 2 2 2

2
1

44 12 66 12 22

( ) ( ) 0

: ( 2 )

( ) ( ) 0

y

T
C SS SS TS TTS

x y x

w w
S S S SS SS

y x y x y

T
C SS SS TS TTS

x y y

φ

ψ
φ

ψ ψ
δψ

φψ

∂

∂∂
+ − + + + =

∂ ∂ ∂

∂ ∂ ∂ ∂
+ + − +

∂ ∂ ∂ ∂ ∂

∂∂
+ − + + + =

∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

    (13) 
 
The associated consistent boundary conditions 
obtained are as below: Along the edge x = 0 and x = a 

3 3 2 2

3 2 2 212 66 66 2222
( 4 ) 2

w w
D D D S S

y y x x y

ψ ψ∂ ∂ ∂ ∂
− − + + +

∂ ∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

      

2
1

66 12 2212
( 2 ) ( ) 0

T
S S TD TTD

x y y

φ ∂∂
+ + − + =

∂ ∂ ∂
      

or w is prescribed 
2 2

12 22 12 222 2
w w d d

D D S S
x y dx dy

φ ψ∂ ∂
+ − − +

∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠    

12 22 1( ) 0TD TTD T+ =

 
or 

w

y

∂

∂
 is prescribed   

2

66 662 0
d d w

SS S
y x y x

φ ψ ∂
+ − =

∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠          

or φ   is 

prescribed                  
2 2

12 12 22 222 2
w w

S SS S SS
x x y y

φ ψ∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂  
12 22 1( ) 0TS TTS T− + =

                or ψ  is prescribed           (14) 
Along the edge y = 0 and y = b: 

3 3 2 2

11 12 66 66 113 2 2 2

2
1

12 66 11 12

( 4 ) 2

( 2 ) ( ) 0

w w
D D D S S

x x y y x

T
S S TD TTD

x y x

φ φ

ψ

∂ ∂ ∂ ∂
− − + + +

∂ ∂ ∂ ∂ ∂

∂∂
+ + − + =

∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

or w is prescribed  
 

2 2

11 12 11 122 2
w w d d

D D S S
x y dx dy

φ ψ∂ ∂
+ − −

∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠
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12 11 1( ) 0TD TTD T+ + =

                       
   

or 
w

x

∂

∂
 is prescribed    

2 2

11 12 11 122 2
w w d d

S S SS SS
x y dx dy

φ ψ∂ ∂
+ + +

∂ ∂

⎛ ⎞
−⎜ ⎟
⎝ ⎠

         

11 12 1( ) 0TS TTS T− + =                                  

orφ  is prescribed   
2

66 662 0
d d w

SS S
dx dy x y

ψ φ ∂
+ − =

∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

           or ψ  is 

prescribed     (15) 
 

IV. ILLUSTRATIVE EXAMPLES  
 

A. The Closed form Solution: 
The following is the solution form for 

andw(x, y), (x, y), ψ(x, y)φ  satisfying the boundary 
conditions given by the equations through perfectly 
for a plate with all the edges simply supported: 
 

( ) sin sin

( ) cos sin

( ) sin cos

( ) sin sin

mn

mn

mn

1 mn

mπx nπyw x, y = w
a bm=1 n=1

mπx nπyx, y =
a bm=1 n=1

mπx nπyψ x, y = ψ
a bm=1 n=1

mπx nπyT x, y = T
a bm=1 n=1

φ φ

∞ ∞
∑ ∑

∞ ∞
∑ ∑

∞ ∞
∑ ∑

∞ ∞
∑ ∑

        (16) 

 
where, and mnmn mn mnw , ,ψ Tφ  are coefficients, which 
can be easily evaluated after substitution of Eq. (16) 
in the set of three governing differential equations 
(14) and solving the resulting simultaneous equations 
(see Appendix A). Having obtained the values of 

and mnmn mn mnw , ,ψ Tφ   one can then calculate all the 
displacement and stress components within the plate. 
For linear thermal load 0mnT T= and x y cα α α= =  

 
B. Illustrative Example: 
A plate of length a, width b, and thickness h is 
considered. The plate has simply supported boundary 
conditions at edges x = 0, a and y = 0, b. The plate 
subjected to sinusoidal thermal load as given below  

( ) ( )1
2T  x, y, z  =  zT x, y
h  

The following isotropic material properties are used,  
      

-6380 , 0 .3, 7 .4  ×  10x yE  G P a   =μ α α= = =  
 

V. RESULTS AND DISCUSSION 
 
Displacements and stresses are obtained for isotropic 
plates under linear thermal load and presented in the 

following normalized forms for the purpose of 
discussion. 

0 0 0

, ,
c c c

u v wu v w
T h T h T hα α α

= = =
 

0 0 0

, ,y xyx
x y xy

c C c C c CE E ET T T

σ τ

α α α

σσ σ τ= = =
 

 
TABLE I COMPARISON OF INPLANE 

DISPLACEMENT  FOR THE ISOTROPIC PLATE 
SUBJECTED TO SINUSOIDAL THERMAL 

LOAD. 
a/h Source Model u  
5 Present HYDT 1.0345 

Ghugal and Kulkarni [11] TSDT 1.0345 
10 Present HYDT 2.0690 

Ghugal and Kulkarni [11] TSDT 2.0690 
Mindlin [1] FSDT 2.0690 
Kirchoff CPT 2.0690 

 
TABLE II COMPARISON OF TRANSVERSE 

DISPLACEMENTS FOR THE ISOTROPIC PLATE 
SUBJECTED TO SINUSOIDAL THERMAL 

LOAD. 
a/h Source Model w  
5 Present HYDT 3.2930 

Ghugal and Kulkarni[11] TSDT 3.2930 
10 Present HYDT 13.1719 

Ghugal and Kulkarni [11] TSDT 13.1719 
Mindlin [1] FSDT 13.1717 
Kirchoff CPT 13.1718 
Matsunga[14,15] HSDT 13.1100 

 
TABLE III COMPARISON OF INPLANE 

NORMAL STRESSES FOR THE ISOTROPIC 
PLATE SUBJECTED TO SINUSOIDAL 

THERMAL LOAD. 
a/h Source Model 

xσ  yσ  

5 Present HYDT 0.500 0.500 
Ghugal and 
Kulkarni [11] 

TSDT 0.500 0.500 

10 Present HYDT 0.500 0.500 
Ghugal and 
Kulkarni [11] 

TSDT 0.500 0.500 

Mindlin [1] FSDT 0.500 0.500 
Kirchoff CPT 0.500 0.500 
Matsunga [14,15] HSDT --- -- 

 
TABLE IV COMPARISON OF INPLANE AND 

TRANSVERSE SHEAR STRESS  FOR THE 
ISOTROPIC PLATE SUBJECTED TO 

SINUSOIDAL THERMAL LOAD. 
a/h Source Model 

xyτ  yzτ  
5 Present HYDT 0.50 0.50 
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Ghugal and Kulkarni 
[11] 

TSDT 0.50 0.50 

10 Present HYDT 0.50 0.50 

Ghugal and Kulkarni 
[11] 

TSDT 0.50 0.50 

Mindlin [1] FSDT 0.50 0.50 

Kirchoff CPT 0.50 0.50 

Matsunga [14,15] HSDT --- --- 

 
C. Discussion of Result 
The results obtained for displacement and stresses for 
simply supported isotropic plate subjected to linear 
thermal load are presented in Tables I through IV. 
Through thickness variation of displacement and 
stresses for aspect ratio 10 are shown in Figures 1 
through 3. 
 
From Tables and Figures, it is observed that, the 
results obtained by present theory for inplane 
displacements, inplane normal stresses, inplane shear 
stress and transverse shear stress, are identical with 
those obtained by other theories. The transverse 
displacement (w) obtained by present theory is 
identical with that obtained by Ghugal and Kulkarni’s 
TSDT theory whereas Mindlin’s FSDT and 
Kirchhoff’s CPT underestimates the same.  
 
D. Conclusions 
Thermal response of isotropic plate under linear 
temperature distribution through the thickness of 
plate has been studied by using hyperbolic shear 
deformation theory. From the numerical results and 
discussion following conclusions are drawn. 
 
1. The present theory is variationally consistent and 

does not require shear correction factor. 
2. Present theory gives accurate prediction of 

thermal response of isotropic plate respect of 
displacement and stresses. 

3. Inplane displacements and normal stresses 
obtained by present theory and other higher order 
theories are identical. 

4. Transverse displacements obtained by present 
theory are in excellent agreement with those of 
other higher order theories. 

5. Transverse shear stresses are zero in case of 
isotropic plate subjected to linear thermal load. 
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Through thicness distribution of inplane displacements 
of isotropic plate for aspct ratio 10.      Figure 2.  
Through thicness distribution of inplane normal 
stresses of shisotropic plate for aspct ratio 10.       
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Figure 3.Through thicness distribution of inplane shear 
stresss of shisotropic plate for aspct ratio 10. of isotropic 

plate for aspect ratio 10. 
 

VI. APPENDIX 
 
The coefficients appearing in the governing 
differential equations and boundary conditions are as 
follows: 
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