
International Journal of Electronics and Electical Engineering International Journal of Electronics and Electical Engineering

Volume 1 Issue 1 Article 9

July 2012

Multiplier Based On Add And Shift Method By Passing Zero Multiplier Based On Add And Shift Method By Passing Zero

Shambhavi S
Department of EC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India,
shambhavi.nandi@gmail.com

K B ShivaKumar
Department of TC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India, kbsssit@gmail.com

M Z Kurian
Department of EC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India, mz.kurian@gmail.com

H S Jayaramu
Department of TC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India,
hs.jayaramu@gmail.com

Follow this and additional works at: https://www.interscience.in/ijeee

 Part of the Power and Energy Commons

Recommended Citation Recommended Citation
S, Shambhavi; ShivaKumar, K B; Kurian, M Z; and Jayaramu, H S (2012) "Multiplier Based On Add And Shift
Method By Passing Zero," International Journal of Electronics and Electical Engineering: Vol. 1 : Iss. 1 ,
Article 9.
DOI: 10.47893/IJEEE.2012.1008
Available at: https://www.interscience.in/ijeee/vol1/iss1/9

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Electronics and Electical Engineering by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijeee
https://www.interscience.in/ijeee/vol1
https://www.interscience.in/ijeee/vol1/iss1
https://www.interscience.in/ijeee/vol1/iss1/9
https://www.interscience.in/ijeee?utm_source=www.interscience.in%2Fijeee%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=www.interscience.in%2Fijeee%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijeee/vol1/iss1/9?utm_source=www.interscience.in%2Fijeee%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Multiplier Based On Add And Shift Method By Passing Zero

1

 Multiplier Based On Add And Shift Method ByPassing Zero

Shambhavi S 1, K B ShivaKumar2, M Z Kurian1, H S Jayaramu2

 1Department of EC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India
2Department of TC, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

 E‐mail ‐ Shambhavi.nandi@gmail.com, kbsssit@gmail.com

Abstract

In this paper, a low-power structure for shift-and-add
multipliers is proposed. The architec-ture considerably
lowers the switching activity of conventional multipliers.
The modification to the multiplier which multiplies A by B
include the removal of the shifting register, direct feeding of
A to the adder, bypassing the adder whenever possible, using
a ring counter instead of a binary counter and removal of
the partial product shift. The architecture makes use of a
low-power ring counter proposed in this work . The
proposed multiplier can be used for low-power applications
where the speed is not a primary design parameter.

Index Terms: Hot-block ring counter, low-power multiplier,
low-power ring counter, shift-and-add multiplier

1. INTRODUCTION

Multipliers are among the fundamental components of many
digital systems and, hence, their power dissipation and speed
are of prime concern. For portable applications where the
power consumption is the most important parameter, one
should reduce the power dissipation as much as possible. One
of the best ways to reduce the dynamic power dissipation,
henceforth referred to as power dissipation in this paper, is to
minimize the total switching activity, i.e., the total number of
signal transitions of the system.

Many research efforts have been devoted to reducing the
power dissipation of different multipliers (e.g., [1]–[3]). The
largest contribution to the total power consumption in a
multiplier is due to generation of partial product. Among
multipliers, tree multipliers are used in high speed
applications such as filters, but these require large area. The
carry-select-adder (CSA)-based radix multipliers, which have
lower area overhead, employ a greater number of active
transistors for the multiplication operation and hence consume
more power. Among other multipliers, shift-and-add
multipliers have been used in many other applications for their
simplicity and relatively small area requirement [4]. Higher-
radix multipliers are faster but consume more power since
they employ wider registers, and require more silicon area due
to their more complex logic.

Fig. 1. Architecture of the conventional shift-and-add
multiplier with major sources of switching activity

2. LOW POWER SHIFT-AND-ADD MULTIPLIER

A. Main Sources of Switching Activity: The architecture of a
conventional shift-and-add multiplier, which multiplies A by
B is shown in Fig. 1. There are six major sources of
switching activity in the multiplier. These sources, which are
marked with dashed ovals in the figure, are: (a) shifts of the B
register;(b) activity in the counter; (c) activity in the adder;
(d) switching between “0” and A in the multiplexer; (e)
activity in the mux-select controlled by B(0); and (f) shifts of
the partial product (PP) register. Note that the activity of the
adder consists of required transitions (when B(n) is nonzero)
and unnecessary transitions (when B(n) is zero). By removing
or minimizing any of these switching activity sources, one
can lower the power consumption. Since some of the nodes
have higher capacitance, reducing their switching will lead to

International Journal of Electrical and Electronics Engineering (IJEEE), Volume‐1, Issue‐1

35

Multiplier Based On Add And Shift Method By Passing Zero

2

more power reduction. As an example, B ሺnሻ is the selector
line of the multiplexer which is connected to ß gates for a ß-
bit multiplier. If we somehow eliminate this node, a
noticeable power saving can be achieved. Next, we describe
how we minimize or possibly eliminate these sources of
switching activity.

B. Proposed Low Power Multiplier: BZ-FAD To derive a
low-power architecture, we concentrate our effort on
eliminating or reducing the sources of the switching activity
discussed in the previous section. The proposed architecture
which is shown in Fig. 2

1) Shift of the B Register: In the traditional architecture (see
Fig. 1), to generate the partial product, ₃₃₃ is used to decide
between ğ and 0. If the bit is “1”, ğ should be added to the
previous partial product, whereas if it is “0”, no addition
operation is needed to generate the partial product. Hence in
each cycle, register should be shifted to the right so that its
right bit appears at B(n); this operation gives rise to some
switching activity. To avoid this, in the proposed architecture
(see Fig. 2) a multiplexer ₃₃₃₃ with one-hot encoded bus
selector chooses the hot bit of in each cycle. A ring counter is
used to select b(n) in the nth cycle. As will be seen later, the
same counter can be used for block ₃₃ as well. The ring
counter used in the proposed multiplier is noticeably wider
(32 bits versus 5 bits for a 32-bit multiplier) than the binary
counter used in the conventional architecture; therefore an
ordinary ring counter, if used in BZ-FAD, would raise more
transitions than its binary counterpart in the conventional
architecture. To minimize the switching activity of the
counter, we utilize the low-power ring counter, which is
described in Section II-B2.

2) Reducing Switching Activity of the Adder: In the
conventional multiplier architecture (see Fig. 1), in each
cycle, the current partial product is added to ğ (when B (n) is
one) or to 0 (when B (n) is zero).This leads to unnecessary
transitions in the adder when B (n) is zero. In these cases, the
adder can be bypassed and the partial product should be
shifted to the right by one bit. This is what is performed in the
proposed architecture which eliminates unnecessary switching
activities in the adder. As shown in Fig. 2, the Feeder and
Bypass registers are used to bypass the adder in the cycles
where b(n) is zero. In each cycle, the hot bit of the next cycle
is checked. If it is 0, i.e., the adder is not needed in the next
cycle, the Bypass register is clocked to store the current
partial product. If b(n+1) is 1, i.e., the adder is really
needed in the next cycle, the Feeder register is clocked to
store the current partial product which must be fed to the
adder in the next cycle. Note that to select between the Feeder
and Bypass registers we have used NAND and NOR gates
which are inverting logic, therefore, the inverted clock (₃
Clock in Fig. 2) is fed to them. Finally, in each cycle, b(n)
determines if the partial product should come from the Bypass
register or from the Adder output. In each cycle, when the hot
bit b(n) is zero, there is no transition in the adder since its
inputs do not change. The reason is that in the previous cycle,

the partial product has been stored in the Bypass register and
the value of the Feeder register, which is the input of the
adder, remains unchanged. The other input of the adder is ğ,
which is constant during the multiplication. This enables us to
remove the multiplexer and feed input ğ directly to the adder,
resulting in a noticeable power saving. Finally, note that the
BZ-FAD architecture does not put any constraint on the adder
type. In this work, we have used the ripple carry adder which
has the least average transition per addition among the look
ahead, carry skip, carry-select, and conditional sum adders.

3) Shift of the PP Register: In the conventional architecture,
the partial product is shifted in each cycle giving rise to
transitions. In-specting the multiplication algorithm reveals
that the multiplication may be completed by processing the
most significant bits of the partial product, and hence, it is not
necessary for the least significant bits of the partial product to
be shifted. We take advantage of this observation in the BZ-
FAD architecture. In Figure 2 for b(n) the lower half of the
partial product, we use ß latches (for a ß-bit multiplier). These
latches are indicated by the dotted rectangle ₃₃ in Fig. 2. In
the first cycle, the least significant bit PP (0) of the product
becomes finalized and is stored in the right-most latch of
The ring counter output is used to open (unlatch) the proper
latch. This is achieved by connecting the line of the n th latch
to the n th bit of the ring counter which is “1” in the n th
cycle. In this way, the n th latch samples the value of the n th
bit of the final product (see Fig. 2). In the subsequent cycles,
the next least significant bits are finalized and stored in the
proper latches. When the last bit is stored in the left-most
latch, the higher and lower halves of the partial product form
the final product result.

Using this method, no shifting of the lower half of the partial
product is required. The higher part of the partial product,
however, is still shifted. Comparing the two architectures,
proposed architecture saves power for two reasons: first, the
lower half of the partial product is not shifted, and second,
this half is implemented with latches instead of flip-flops.
Note that in the conventional architecture (see Fig. 1) the data
transparency problem of latches prohibits us from using
latches instead of flip-flops for forming the lower half of the
partial product. This problem does not exist in BZ-FAD since
the lower half is not formed by shifting the bits in a shift
register. In brief, from the six sources of activity in the
multiplier, we have eliminated the shift of the B register,
reduced the activities of the right input of the adder, and
lowered the activities on the multiplexer select line. In
addition, we have minimized the activities in the adder, the
ac-tivities in the counter, and the shifts in the PP (partial
product) register. The proposed architecture, however,
introduces new sources of activities. These include the
activities of a new multiplexer which has the same size as that
of the multiplexer of the conventional architecture. Note that
the higher part of the partial product in both architectures has
the same activity. As will be seen in Section IV the net effect
is a lower switching activity for proposed compared to that of
the conventional multiplier.

International Journal of Electrical and Electronics Engineering (IJEEE), Volume‐1, Issue‐1

36

Multiplier Based On Add And Shift Method By Passing Zero

3

Fig. 2. Proposed low power multiplier architecture .

3. HOT BLOCK RING COUNTER

In the proposed multiplier, we make use of a ring counter the
architecture of which is described in this section.

In a ring counter always a single “1” is moving from the right
to the left. Therefore in each cycle only two flip-flops should
be clocked. To reduce the switching activity of the counter,
we propose to partition the counter into Ĕ blocks which are
clock-gated with a special multiple-bit clock gating structure
shown in Fig. 4, whose power and area overheads are
independent of the block size. In the proposed counter, called
Hot Block ring counter (see Fig. 3) fewer superfluous
switching activity ex-ists and there are many flip-flops whose
outputs do not go to any clock gating structure. This
noticeably reduces the total switching activity of the ring
counter. We have utilized the property that in each cycle, the
outputs of all flip-flops, except for one, are “0”. Thus in the
partitioned ring counter of Fig. 3, there is exactly one block
that should be clocked (except for the case that the “1” leaves
a block and enters another). We call this block the Hot Block.
Therefore, for each block, the clock gating structure (CG)
should only know whether the “1” has entered the block (from

the right) and has not yet left it (from the left). Passing the
clock pulses to the block once the “1” appears at the input of
the first flip-flop of the block. It shuts off the clock pulses
after the “1” leaves the left-most flip-flop of the block.

Fig. 3. Hot Block architecture for a 16-bit ring counter—The
ring counter is partitioned into Ĕ blocks of size ̃ (̃ is 4 in this
figure). Only two clock gators are shown.

Fig. 4.Clock gating structure used in the proposed
architecture.

The clock gating structure (CG) proposed for the Hot Block
ring counter is shown in Fig. 4. It is composed of a
multiplexer ₃₃, a NAND gate, and a resettable latch. In this
work, the multiplexers are implemented with transmission
gates. In addition to the Reset and clock signals, there are two
other signals called Entrance and Exit, coming from the
neighboring left and right blocks. These are used to determine
whether the “1” is present in the block to which the output of

37

International Journal of Electrical and Electronics Engineering (IJEEE), Volume‐1, Issue‐1

Multiplier Based On Add And Shift Method By Passing Zero

4

the CG goes. When the active high Reset signal is “1”, the
latch is reset which causes the value of the Entrance signal to
be placed on the ₃₃ ₃ ₃ line of the latch through multiplexer
M1. This in turn causes the latch to read the Entrance signal,
which was previously reset to “0”, since the whole ring
counter is reset and all the bits except the first are reset to “0”.
After a sufficiently long interval, Reset goes to “0” and since
Entrance has a value of “0”, the latch keeps holding “0” on its
output, forcing Clock-OUT to “1” after the CG is reset. This
condition should persist until the “1” is about to enter to the
block.

Multiplexer plays the watchdog role. After the CG is reset, the
selector line of multiplexer ₃₃, has the value of “0” which
causes the Entrance signal to be selected (watch dogged) by
this multiplexer. The output of the latch is also connected to
the NAND gate which causes the input clock signal to be shut
off (gated), after the CG is reset. The Entrance and Exit
signals have special meanings as follows. When “1”, Entrance
means that the “1” is about to enter the block in the next
cycle. This line is connected to the block input, namely, the
input of the right-most flip-flop in the block, as shown in Fig.
3. The Exit signal on the other hand indicates the “1” has left
the block and hence it should no longer be clocked. Notice

that the Exit signal is connected to the output of the right-most
flip-flop of the left hand block (see Fig. 3). Once the Entrance
signal becomes “1”, the sample and data-in lines of the latch
are set to “1”. This causes multiplexer ₃₃ to select (watch dog)
the Exit signal which is “0”, since all cells of the ring counter
ex-cept one, have the value of “0” in them. Through
multiplexer ₃₃, the value of the Exit signal (“0”) goes to the ₃₃
₃ ₃ line of the latch, which in turn causes the latch to hold “1”
(the value of the Entrance signal) on its output. From this
moment on, the Exit signal is watch dogged by multiplexer ₃₃;
in addition, clock pulses are no longer gated by the NAND
gate. To reduce the layout area, we have used a NAND gate
instead of an AND gate, and thus, the input clock signal to the
clock gator should be the inverted clock (₃ ₃☼₃ ß 0 ₃β in Fig.
4). In the cycles when the Entrance signal becomes “1”, no
positive clock edges should appear at the output of the clock
gator; instead it should only prepare to pass clock pulses
during the next clock cycles. This is achieved by using the
inverted clock signal; the flip-flops are pos-itive-edge
triggered, and hence, when the Entrance signal, which is the
output of some flip-flop, becomes “1” at a positive clock
edge, meaning that no extra positive edge is produced at the
clock gator output.

The clock pulses come to the clock gating structure, propagate
through the NAND gate, and go to the block cells via Clock-
OUT, until the Exit signal becomes “1”. Then line of the latch
becomes “1” through multiplexer ₃₃ causing the latch to read
its input (the Entrance signal), which is ’0’ at this time. The
“0” prop-agates through the latch and reaches the selector line
of multiplexer ₃₃ giving rise to the Entrance signal to be
watch dogged again. The output of the latch, which is “0” in
this state, also forces the NAND gate to shut off the input
clock pulses. Note that regardless of the block size, the
proposed CG (see Fig. 4) has a total of four inputs.

5. SUMMARY AND CONCLUSION:

The proposed architecture lowers the power
dissipation and area when compared to a conventional shift
and add multiplier shown in table 6.1 . A multiplexer with one
hot encoded bus selector is used for avoiding the switching
activity due to the shifting of the multiplier register. Feeder
and bypass registers are used for avoiding the unnecessary
additions.

The proposed architecture makes use of bit width
control logic and a low power ring counter .The design can be
verified using Modelsim with verilog code, and power
consumption is analyzed using Xilinx software. Proposed
architecture can attain 64% power reduction and 30% area
saving when compared to the conventional shift and add
multipliers.

Comparison
results

Power Area

Conventional
multiplier

151.11 mw 388 of 704
slices
50%

Proposed multiplier 97.85 mw 145 of 704
slices
20%

38

International Journal of Electrical and Electronics Engineering (IJEEE), Volume‐1, Issue‐1

Multiplier Based On Add And Shift Method By Passing Zero

5

REFERENCES

[1] A. Chandrakasan and R. Brodersen, “Low-power CMOS

digital de-sign,” IEEE J. Solid-State Circuits, vol. 27, no.
4, pp. 473–484, Apr. 1992.

[2] N.-Y. Shen and O. T.-C. Chen, “Low-power multipliers
by minimizing switching activities of partial products,” in
Proc. IEEE Int. Symp. Cir-cuits Syst., May 2002, vol. 4,
pp. 93–96.

[3] B. Parhami, Computer Arithmetic Algorithms and
Hardware Designs, 1st ed. Oxford, U.K.: Oxford Univ.
Press, 2000.

[4] O. Chen, S. Wang, and Y. W. Wu, “Minimization of
switching activities of partial products for designing low-
power multipliers,” IEEE Trans. Very Large Scale Integr.

[5] (VLSI) Syst., vol. 11, no. 3, pp. 418–433, Jun. 2003.
[6] Z. Huang and M. D. Ercegovac, “High-performance low-

power left-toright array multiplier design,” IEEE Trans.
Comput., vol. 54, no. 2, pp. 272–283, Mar. 2005.

[7] H. Lee, “A power-aware scalable pipelined booth
multiplier,” in Proc. IEEE Int. SOC Conf., 2004, pp. 123–
126.

[8] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. I. David,
Digital Logic Circuit Analysis & Design. Englewood
Cliffs, NJ: Prentice-Hall, 1996.

[9] M.Mottaghi Dastjerdi ,A.afzali Kusha,m.Pedram
“BZFAD A Low Power Low Area Multiplier Based on
Shift and Add Architecture “ IEEE Trans. Very Large
Scale Integr .(VLSI)Syst.,Vol.17, no-2,pp302-306, Feb.
2009

39

International Journal of Electrical and Electronics Engineering (IJEEE), Volume‐1, Issue‐1

	Multiplier Based On Add And Shift Method By Passing Zero
	Recommended Citation

	Multiplier Based On Add And Shift Method By Passing Zero

